Skip to main content

Patterning Metallic Nanoparticles by DNA Scaffolds

  • Chapter
Bio-Applications of Nanoparticles

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 620))

Abstract

In order to miniaturize nanoelectronic circuitry and architectures, organizing the nanoelectronic components in deliberately designed complex patterns is desired. Bio-mimetic self-assembly is a possible approach to achieve this goal. Bio-macromolecules can serve as scaffolds to template the nanoelectronic components into patterns with precise periodicity and complexity. In this review, we will summarize the progress in organizing metallic nanoparticles templated by DNA scaffolds into one and two dimensional architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seeman NC. DNA in a material world. Nature 2003; 421:427–31.

    Article  PubMed  Google Scholar 

  2. Yan H. Nucleic acid nanotechnology. Science 2004;306:2048–49.

    Article  PubMed  CAS  Google Scholar 

  3. Seeman NC. Nucleic acid junctions and lattices. J Theor Biol 1982; 99:237–47.

    Article  PubMed  CAS  Google Scholar 

  4. Lin C, Liu Y, Rinker S et al. DNA tile, based self-assembly: Building complex nanoarchitectures. Chem Phys Chem 2006; 7:1641–47.

    PubMed  CAS  Google Scholar 

  5. Seeman NC. Nucleic acid nanostructures and topology. Angew Chem Int Ed 1998; 37:3220–38.

    Article  CAS  Google Scholar 

  6. Feldkamp U, Niemeyer CM. Rational design of DNA nanoarchitectures. Angew Chem Int Ed 2006; 45:1856–76.

    Article  CAS  Google Scholar 

  7. Simmel FC, Dittmer WU. DNA nanodevices. Small 2005; 1:284–99.

    Article  PubMed  CAS  Google Scholar 

  8. Kiehl RA. Nanoparticle electronic architectures assembled by DNA. J Nanoparticle Res 2000; 2:331–32.

    Article  CAS  Google Scholar 

  9. Kumar A, Pattarkine M, Bhadbhade M et al. Linear superclusters of colloidal gold particles by electrostatic assembly on DNA templates. Advanced Materials 2001; 13:341–44.

    Article  CAS  Google Scholar 

  10. Warner MG, Hutchison JE. Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nature Materials 2003; 2:272–77.

    Article  PubMed  CAS  Google Scholar 

  11. Nakao H, Shiigi H, Yamamoto Y et al. Highly ordered assemblies of Au nanoparticles organized on DNA. Nano Letters 2003; 3:1391–94.

    Article  CAS  Google Scholar 

  12. Koyfman AY, Braun G, Magonov S et al. Controlled spacing of cationic gold nanoparticles by nanocrown RNA. J Am Chem Soc 2005; 127:11886–87.

    Article  PubMed  CAS  Google Scholar 

  13. Patolsky F, Weizmann Y, Lioubashevski et al. Au-nanoparticle nanowires based on DNA and polylysine templates. Angew Chem Int Ed 2002;41:2323–2327.

    Article  CAS  Google Scholar 

  14. Mirkin CA, Letsinger RL, Mucic RC et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996; 382:607–09.

    Article  PubMed  CAS  Google Scholar 

  15. Alivisatos AP, Johnsson KP, Peng X et al. Organisation of ‘nanocrystal molecules using DNA. Nature 1996; 382:609–611.

    Article  PubMed  CAS  Google Scholar 

  16. Loweth CJ, Caldwell WB, Peng X et al. DNA-based assembly of gold nanocrystals. Angew Chem Int Ed 1999; 38:1808–12.

    Article  CAS  Google Scholar 

  17. Zanchet D, Micheel CM, Parak WJ et al. Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Letters 2001; 1:32–35.

    Article  CAS  Google Scholar 

  18. Deng Z, Tian Y, Lee SH et al. DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew Chem Int Ed 2005; 44:3582–3585.

    Article  CAS  Google Scholar 

  19. Li H, Park SH, Reif JH et al. DNA-templated self-assembly of protein and nanoparticle linear arrays. J Am Chem Soc 2004; 126:418–19.

    Article  PubMed  CAS  Google Scholar 

  20. Beyer S, Nickels P, Simmel FC. Periodic DNA nanotemplates synthesized by rolling circle amplification. Nano Letters 2005; 5:719–722.

    Article  PubMed  CAS  Google Scholar 

  21. Niemeyer CM, Bürger W, Peplies J. Covalent DNA-streptavidin conjugates as building blocks for novel biometallic nanostructures. Angew Chem Int Ed 1998; 37:2265–68.

    Article  CAS  Google Scholar 

  22. Xiao S, Liu F, Rosen AE et al. Self assembly of metallic nanoparticle arrays by DNA scaffolding. J Nanoparticle Res 2002; 4:313–17.

    Article  CAS  Google Scholar 

  23. Pinto YY, Le JD, Seeman NC et al. DNA-templated self-assembly of metallic nanocomponents arrays on a surface. Nano Letters 2004;4:2343–47.

    Article  Google Scholar 

  24. Pinto YY, Le JD, Seeman NC et al. Sequence-encoded self-assembly of multiple-nanocomponent arrays by 2D DNA scaffolding. Nano Letters 2005; 5:2399–02.

    Article  PubMed  CAS  Google Scholar 

  25. Zheng J, Constantinou PE, Micheel C et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Letters 2006; 6:1502–04.

    Article  PubMed  CAS  Google Scholar 

  26. Zhang J, Liu Y, Ke Y et al. Periodic square-like gold nanoparticle arrays templated by self-assembled 2D DNA nanogrids on a surface. Nano Letters 2006; 6:248–51.

    Article  PubMed  CAS  Google Scholar 

  27. Yan H, Park SH, Finkelstein G et al. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 2003; 301:1882–84.

    Article  PubMed  CAS  Google Scholar 

  28. Sharma J, Chhabra R, Liu Y et al. DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew Chem Int Ed 2006; 45:730–35.

    Article  CAS  Google Scholar 

  29. Niemeyer CM, Ceyhan B, Hazarika P. Oligofunctional DNA-gold nanoparticle conjugates. Angew Chem Int Ed 2003; 42:5766–70.

    Article  CAS  Google Scholar 

  30. Aldaye FA, Sleiman HF. Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. Angew Chem Int Ed 2006; 45:2204–09.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Chhabra, R., Sharma, J., Liu, Y., Yan, H. (2007). Patterning Metallic Nanoparticles by DNA Scaffolds. In: Chan, W.C.W. (eds) Bio-Applications of Nanoparticles. Advances in Experimental Medicine and Biology, vol 620. Springer, New York, NY. https://doi.org/10.1007/978-0-387-76713-0_8

Download citation

Publish with us

Policies and ethics