Skip to main content

Multiple Cortical Representations of Optic Flow Processing

  • Chapter
Optic Flow and Beyond

Part of the book series: Synthese Library ((SYLI,volume 324))

Abstract

When an observer moves through the environment, moving images form on his or her retinae. The visual perception of self-motion is provided by expanding or contracting visual fields projected on the retina. Gibson (1950) called this particular motion, originated by the observer’s own navigation, “Optic Flow”. He noted that when an observer moves forward, fixating his or her final destination, the expanding visual field seems to originate from a specific point and he named this point “Focus of Expansion” (FOE). In everyday life, self-motion perception is more complicated, because eye and vestibular movements almost always occur together with the optic flow. For example, during locomotion, we experience retinal flow, composed of the translational and rotational components of eye, head and body movements, and optic flow (Lappe et al., 1999). Although all the self–motion perception mechanisms are not clear yet, it seems that the visual system analyzes the visual component, i.e. the optic flow, first and then it combines the optic flow with the other retinal and extraretinal signals in order to construct a dynamic map of extrapersonal space suitable for self–motion guidance (Regan & Beverley, 1982; Warren & Hannon, 1990; Lappe et al., 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersen,R. A., Asanuma, C., Essick, G. K., & Siegel, R. M. (1990). Cortico-cortical connections of anatomically and physiologically defined subdivisions within inferior parietal lobule. J. Comp. Neurol., 296, 65–113.

    Article  PubMed  CAS  Google Scholar 

  • Andersen,R. A., Essick, G. K., & Siegel, R. M. (1985). Encoding of spatial location by posterior parietal neurons. Science, 230, 456–458.

    Article  PubMed  CAS  Google Scholar 

  • Anderson,K. C., & Siegel, R. M. (1999). Optic flow selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey. J. Neurosci., 19, 2681–2692.

    PubMed  CAS  Google Scholar 

  • Baizer,J. S., Ungerleider, L. G., & Desimone, R. (1994). Organization of visual inputs to the inferior temporal and and posterior parietal cortex in macaques. J. Neurosci., 11, 168–190.

    Google Scholar 

  • Bremmer, F., Ilg, U. J., Thiele, A.,Distler, C.,&Hoffmann, K. P. (1997a). Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. J. Neurophysiol., 77, 944–961.

    PubMed  CAS  Google Scholar 

  • Bremmer,F., Duhamel, J.-R., Ben Hamed, S., & Graf, W. (1997b). The representation of movement in near extrapersonal space in the macaque ventral intraparietal area (VIP). In: P. Thier, & H.O. Karnath (Eds.), Parietal lobe contributions to orientation in 3-D space. Exp. Brain Res. 25 (pp. 619–630 ), Series Springer, Berlin.

    Google Scholar 

  • Bremmer, F., Graf, W., Ben Hamed, S.,& Duhamel, J.-R. (1999). Eye position encoding in the macaque ventral intraparietal area (VIP). Neuroreport, 10, 873–878.

    Article  PubMed  CAS  Google Scholar 

  • Bremmer,F., Duhamel, J.-R., Ben Hamed, S., & Graf, W. (2002a). Heading encoding in the macaque ventral intraparietal area (VIP). Eur. J. Neurosci., 16, 1554–1568.

    Article  PubMed  Google Scholar 

  • Bremmer,F., Klam, F., Duhamel, J.-R., Ben Hamed, S., & Graf, W. (2002b). Visual vestibular interactive responses in the macaque ventral intraparietal area (VIP). Eur. J. Neurosci., 16, 1569–1586.

    Article  PubMed  Google Scholar 

  • Bruce, C., Desimone, R., & Gross, C.G. (1981). Visual properties of neurons in a polysensory area in the superior temporal sulcus of the macaque. J. Neurophysiol., 46, 369–384.

    PubMed  CAS  Google Scholar 

  • Boussaoud, D., Ungerleider, L. G., & Desimone, R. (1990). Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of superior temporal visual areas in the macaque. J. Comp. Neurol., 296, 462–495.

    Article  PubMed  CAS  Google Scholar 

  • Cavada, C., & Goldman-Rakic P. S. (1989). Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J. Comp. Neurol., 287, 422–445.

    Article  PubMed  CAS  Google Scholar 

  • Colby, C. L., Duhamel, J-R., & Goldberg, M. E. (1993). Ventral intraparietal area of the macaque: anatomic location and visual response properties. J. Neurophysiol., 69, 902–914.

    PubMed  CAS  Google Scholar 

  • Cusick, C. G., Seltzer, B., Cola, M., & Griggs, E. (1995). Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: evidence for subdivisions of superior temporal polysensory cortex. J. Comp. Neurol., 360, 513–535.

    Article  PubMed  CAS  Google Scholar 

  • Cutting, J. E. (1996). Wayfinding from multiple sources of local information in retinal flow. Percept. Perform., 22, 1299–1313.

    Article  Google Scholar 

  • Cutting, J. E., Wang, R.F., Fluckiger, M., & Baumberger, B. (1999). Human heading judgements and object-based motion information. Vision Res?, 39, 1079–1105.

    Article  PubMed  CAS  Google Scholar 

  • Desimone, R., & Gross, C. G. (1979). Visual areas in the temporal cortex of the macaque. Brain Res?, 178, 363–380.

    Article  PubMed  CAS  Google Scholar 

  • Desimone, R., & Ungerleider, L. G. (1986). Multiple visual areas in the caudal superior temporal sulcus of the macaque. J. Comp. Neurol., 248, 164–190.

    Article  PubMed  CAS  Google Scholar 

  • Duffy, C. J. (2000). Optic flow analysis for self-movement perception. In: M. Lappe (Ed.), Neuronal processing of optic flow. Int. Rev. Neurobiol. 44 (pp. 199–218). Academic Press.

    Google Scholar 

  • Duffy, C. J., & Wurtz, R. H. (1991a). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large field stimuli. J. Neurophisiol., 65, 1329–1345.

    CAS  Google Scholar 

  • Duffy, C. J., & Wurtz, R. H. (1991b). Sensitivity of MST neurons to optic flow stimuli. II. Mechanism of response selectivity revealed by small-field stimuli. J. Neurophisiol., 65, 1346–1359.

    CAS  Google Scholar 

  • Duffy, C. J., & Wurtz, R. H. (1995). Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J. Neurosci., 15, 5192–5208.

    PubMed  CAS  Google Scholar 

  • Duffy, C. J., & Wurtz, R. H. (1997). Medial superior temporal area neurons respond to speed patterns in optic flow. J. Neurosci., 17, 2839–2851.

    PubMed  CAS  Google Scholar 

  • Duffy, F. H., & Burchfiel, J. L. (1971). Somatosensory system: organizational hierarchy from single unit in monkey area 5. Science, 172, 273–275.

    Article  PubMed  CAS  Google Scholar 

  • Duhamel, J-R., Colby, C. L., & Goldberg, M. E. (1998). Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J. Neurophysiol., 79, 126–136.

    PubMed  CAS  Google Scholar 

  • Ferraina, S., Battaglia-Mayer, A., Genovesio, A., Marconi, B., Onorati, P., & Caminiti, R. (2001). Early coding of visuomanual coordination during reaching in parietal area PEc. J. Neurophysiol., 85, 462–467.

    PubMed  CAS  Google Scholar 

  • Froehler, M. T., & Duffy, C. J. (2002). Cortical neurons encoding path and place: where you go is where you are. Science, 295, 2462–2465.

    Article  PubMed  CAS  Google Scholar 

  • Frost, B. J., Wylie, D. R., & Wang, Y. C. (1994). The analysis of motion in the visual system of birds. In: P. Green, & M. Davies (Eds.), Perception and motor control in birds (pp. 249–266 ). Springer-Verlag, Berlin.

    Google Scholar 

  • Gibson, J. J. (1950). The perception of the visual world. Boston, Houghton Mifflin.

    Google Scholar 

  • Gibson, J. J. (1966). The sense considered as perceptual system. Boston, Houghton Mifflin.

    Google Scholar 

  • Graziano, M. S., Andersen, R. A., & Snowden, R. J. (1994). Tuning of MST neurons to spiral motions. J. Neurosci., 14, 54–67.

    PubMed  CAS  Google Scholar 

  • Hietanen, J. K., & Perrett, D. I. (1996). A comparison of visual responses to object-and ego-motion in the macaque superior temporal polysensory area. Exp. Brain Res?, 108, 341–345.

    Article  PubMed  CAS  Google Scholar 

  • Jellema, T., Baker, C. I., Wicker, B., & Perrett, D. I. (2000). Neural representation for the perception of the intentionality of actions. Brain Cogn?, 44, 280–302.

    Article  PubMed  CAS  Google Scholar 

  • Lagae, L., Maes, H., Raiguel, S., Xiao, D. K., & Orban, G. A., (1994). Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST, J. Neurophysiol., 71, 1597–1626.

    PubMed  CAS  Google Scholar 

  • van den Berg, A. V. (1999). Perception of self-motion from visual flow. Trends Cogn. Science, 3, 329–336.

    Article  Google Scholar 

  • Lappe, M. (2000). Computational mechanisms for optic flow analysis in primate cortex. In: M. Lappe (Ed.), Neuronal processing of optic flow. Int. Rev. Neurobiol. 44 (pp. 235–268). Academic Press.

    Google Scholar 

  • Linsker, R. (1986). From basic network principles to neural architecture: emergence of spatial-opponent cells. Proc. Natl. Acad. Sci. USA, 83, 7508–7512.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Linsker, R. (1990). Perceptual neural organization: some approaches based on network models and information theory. Annu. Rev. Neurosci?, 13, 257–281.

    Article  PubMed  CAS  Google Scholar 

  • Matelli, M., Govoni, P., Galletti, C., Kutz, D. F., & Luppino, G. (1998). Superior area 6 afferents from the superior parietal lobule in the macaque monkey. J Comp. Neurol., 402, 327–352.

    Article  PubMed  CAS  Google Scholar 

  • Maunsell, J. H. R., &Van Essen, D. C. (1983). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J. Neurophysiol., 3, 2563–2586.

    CAS  Google Scholar 

  • Merchant, H., Battaglia-Mayer, A., & Georgopoulos, A. P. (2001). Effects of optic flow in motor cortex and area 7a. J. Neurophysiol., 86, 1937–1954.

    PubMed  CAS  Google Scholar 

  • Motter, B. C., & Mountcastle, V. B. (1981). The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparing and opponent vector organization. J. Neurosci., 1, 3–26.

    PubMed  CAS  Google Scholar 

  • Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., & Acuna, C., (1975). Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol., 38, 871–908.

    PubMed  CAS  Google Scholar 

  • Page, W. K., & Duffy, C. J. (1999). MST neuronal responses to heading direction during pursuit eye movements. J. Neurophysiol., 81, 596–610.

    PubMed  CAS  Google Scholar 

  • Phinney, R. E., & Siegel, R. M. (2000). Speed selectivity for optic flow in area 7a of the behaving macaque. Cereb. Cortex., 10, 413–421.

    Article  PubMed  CAS  Google Scholar 

  • Raffi, M., (2001). Neuronal responsiveness to classical visual stimuli and optic flow in the superior parietal lobule of the behaving monkey. Doctoral Thesis.

    Google Scholar 

  • Raffi, M., Squatrito, S., & Maioli, M. G. (2002). Neuronal responses to optic flow in the monkey parietal area PEc. Cereb. Cortex, 12, 639–646.

    Article  PubMed  Google Scholar 

  • Raffi, M.,&Siegel, R. M. (2002). A functional architetcture of optic flow in the inferior parietal cortex of the behaving monkey investigated with intrinsic optical imaging. Soc.

    Google Scholar 

  • Neurosci. Abstr. 28 n. 56.9 (32th Annual Meeting of Society for Neuroscience, Orlando, FL, November 02–07, 2002).

    Google Scholar 

  • Read, H. L.,&Siegel, R. M. (1997). Modulation of responses to optic flow in area 7a by retinotopic and oculomotor cues in monkeys. Cereb. Cortex, 7, 647–661.

    Article  PubMed  CAS  Google Scholar 

  • Regan, D., & Beverley, K. I. (1982). How do we avoid confounding the direction we are looking and the direction we are moving? Science, 215, 194–196.

    Article  PubMed  CAS  Google Scholar 

  • Rizzolatti, G., Luppino, G., & Matelli, M. (1998). The organization of the cortical motor system: new concepts. Electroencephalogy. Clin. Neurophysiol., 106, 283–96.

    Article  CAS  Google Scholar 

  • Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., & Iwai, E. (1986). Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J. Neurosci., 6, 145–157.

    PubMed  CAS  Google Scholar 

  • Sakata, H., Takaoka, Y., Kawarasaki, A., & Shibutani, H. (1973). Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res?, 64, 85–102.

    Article  PubMed  CAS  Google Scholar 

  • Sauvan, X. M., & Peterhans, E. (1999). Orientation constancy in neurons of monkey visual cortex. Visual Cognition, 6, 43–54.

    Article  Google Scholar 

  • Schaafsma, S. J., & Duysens, J. (1996). Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. J. Neurophysiol., 76, 4056–4068.

    PubMed  CAS  Google Scholar 

  • Schaafsma, S. J., Duysens, J., & Gielen, C. C. (1997). Responses in ventral intraparietal area of awake macaque monkey to optic flow patterns corresponding to rotation of planes in depth can be explained by translation and expansion effects. Vis. Neurosci?, 14, 633–646.

    Article  PubMed  CAS  Google Scholar 

  • Seltzer, B., & Pandya, D. N. (1989a). Frontal lobe connections of the superior temporal sulcus in the rhesus monkey. J. Comp. Neurol., 281, 97–113.

    Article  PubMed  CAS  Google Scholar 

  • Seltzer, B., & Pandya, D. N. (1989b). Intrinsic connections and architectonics of the superior temporal sulcus in the rhesus monkey. J. Comp. Neurol., 290, 451–471.

    Article  PubMed  CAS  Google Scholar 

  • Shenoy, K. V., Bradley, D. C., & Andersen, R.A. (1999). Influence of gaze rotation on the visual response of primate MSTd neurons. J. Neurophysiol., 81, 2764–2786.

    PubMed  CAS  Google Scholar 

  • Shenoy, K. V., Crowell, J. A., & Andersen, R. A. (2002). Pursuit speed compensation in cortical area MSTd. J. Neurophysiol., 88, 2630–2647.

    Article  PubMed  Google Scholar 

  • Sherk, H., & Fowler, G. A. (2001). Neural analysis of visual information during locomotion. Prog. Brain. Res., 134, 247–64.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, R. M., & Read, H. L. (1997a). Analysis of optic flow in the monkey parietal area 7a. Cereb. Cortex, 7, 327–346.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, R. M., & Read, H. L. (1997b). Construction and representation of visual space in the inferior parietal lobule. In: J. Kaas, K. Rockland, & A. Peters (Eds.), Cereb. Cortex, 12 (pp. 499–525 ). New York, Plenum Press.

    Google Scholar 

  • Squatrito, S., Raffi, M., Maioli, M. G., & Battaglia-Mayer, A. (2001). Visual motion responses of neurons in the caudal area PE of the macaque monkeys. J Neurosci?, 21, RC130 (1–5).

    Google Scholar 

  • Steinmetz, M. A., Motter, B. C., Duffy, C. J., & Mountcastle, V. B. (1987). Functional properties of parietal visual neurons: radial organization of directional ities within the visual field. J. Neurosci., 7, 177–191.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., Fukada, Y., & Saito, H. (1989). Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol., 62, 642–656.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., & Saito, H., (1989). Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol., 62, 626–641.

    PubMed  CAS  Google Scholar 

  • Vaina, L. M., & Rushton, S. K. (2000). What neurological patients tell us about the use of optic flow. In: M. Lappe, (Ed.), Neuronal processing of optic flow. Int. Rev. Neurobiol. 44 (pp. 293–313). Academic Press.

    Google Scholar 

  • von Bonin, G., & Bailey, P. (1947). The neocortex of Macaca mulatta. Urbana, Illinois: Univ. of Illinois Press.

    Google Scholar 

  • Wang, R. F., & Cutting, J. E. (1999). Where we go with a little good information. Psychol. Sci., 10, 71–75.

    Article  Google Scholar 

  • Warren, W. H. J., & Hannon, D. J. (1990). Eye movements and optical flow. J. Opt. Soc. Am. Ser. A., 7, 160–169.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Raffi, M., Siegel, R.M. (2004). Multiple Cortical Representations of Optic Flow Processing. In: Vaina, L.M., Beardsley, S.A., Rushton, S.K. (eds) Optic Flow and Beyond. Synthese Library, vol 324. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2092-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2092-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6589-6

  • Online ISBN: 978-1-4020-2092-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics