Skip to main content

On the Computation of Image Motion and Heading in a 3-D Cluttered Scene

  • Chapter
Optic Flow and Beyond

Part of the book series: Synthese Library ((SYLI,volume 324))

  • 267 Accesses

Abstract

When an observer moves through a static 3-D scene, the retinal image deforms in a way that depends both on the scene geometry and on the observer’s motion. These deformations thus provide information about the scene geometry and the observer’s motion (Gibson, 1950). Human observers can in many cases perceive the direction of 3-D heading from retinal image motion, even under passive viewing such as watching TV. Performance depends on several factors, such as whether there is sufficient depth variation in the scene and whether the image motion is due to real or simulated eye movements. A variety of scene geometries have been used ranging from a single ground plane to a “3-D cloud of dots”. A recent review of human heading perception can be found in (Warren, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adelson, E. & Bergen, J. (1985). Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A, 2(2), 284 - 299.

    Google Scholar 

  • Bolles, R. C., Baker, H. H., & Marimont, D. H. (1987). Epipolar-plane image analysis: An approach to determining structure from motion. Int. J. Comput. Vision, 1, 7 - 55.

    Article  Google Scholar 

  • Gibson, J. J. (1950). The Perception of the Visual World. Houghton Mifflin, Boston.

    Google Scholar 

  • Heeger, D. J. (1987). Optical flow from spatiotemporal filters, First International Conference on Computer Vision, p. 181 - 190.

    Google Scholar 

  • Heeger, D. J. & Jepson, A. D. (1992). Subspace methods for recovering rigid motion. I: algorithm and implementation. Int. J. Comput. Vision, 7, 95 - 117.

    Article  Google Scholar 

  • Hildreth, E. C. & Royden, C. S. (1998). Computing Observer Motion from Optical Flow. In Watanabe, T. (Ed.) High-Level Motion Processing–Computational, Neurobiological, and Psychophysical Perspectives (p. 269 - 294 ), Massachussets: MIT Press.

    Google Scholar 

  • Langer, M. S. & Mann, R. (2001). Dimensional analysis of image motion, IEEE International Conference on Computer Vision, Vancouver, Canada, p. 155 - 162.

    Google Scholar 

  • Langer, M. S. & Mann, R. (2002). Tracking through optical snow, In: Bulthoff, H. H., Lee, S. W., Poggio, T. A., Wallraven, C. (Eds.), 2 nd Workshop on Biologically Motivated Computer Vision: Lecture Notes in Computer Science, 2525 (p. 181-188), Springer-Verlag.

    Google Scholar 

  • Lappe, M. & Rauschecker, J. P. (1993). A neural network for processing of optical flow from egomotion in man and higher mammals. Neural Comput, 5, 374 - 391.

    Article  Google Scholar 

  • Longuet-Higgins, H. & Prazdny, K. (1980). The interpretation of a moving retinal image. Proc. R. Soc. Lond. B, 208, 385 - 397.

    Article  PubMed  CAS  Google Scholar 

  • Mann, R. & Langer, M. S. (2002). Optical snow and the aperture problem, International Conference on Pattern Recognition, Quebec City, Canada, 4, 264-267.

    Google Scholar 

  • Rieger, J. H. & Lawton, D. T. (1985). Processing differential image motion. J. Opt. Soc. Am. A, 2, 254 - 260

    Article  Google Scholar 

  • Royden, C. S. (1997). Mathematical analysis of motion-opponent mechanisms used in the determination of heading and depth. J. Opt. Soc. Am. A, 14(9), 2128 - 2143.

    Google Scholar 

  • Warren, W. H. (1998). The State of Flow. In Watanabe, T. (Ed.) High-Level Motion Processing–Computational, Neurobiological, and Psychophysical Perspectives (p. 315 - 358 ), Massachussets: MIT Press.

    Google Scholar 

  • Watson, A. & Ahumada, A. (1985). Model of human visual-motion sensing. J. Opt. Soc. Am. A, 2(2), 322 - 342.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Langer, M.S., Mann, R. (2004). On the Computation of Image Motion and Heading in a 3-D Cluttered Scene. In: Vaina, L.M., Beardsley, S.A., Rushton, S.K. (eds) Optic Flow and Beyond. Synthese Library, vol 324. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2092-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2092-6_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6589-6

  • Online ISBN: 978-1-4020-2092-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics