Skip to main content

Linking Perception and Neurophysiology for Motion Pattern Processing: The Computational Power of Inhibitory Connections in Cortex

  • Chapter
Optic Flow and Beyond

Part of the book series: Synthese Library ((SYLI,volume 324))

Abstract

The motion of the visual scene across the retina, termed optic flow (Gibson, 1950), contains a wealth of information about our dynamic relationship within the environment. Perceptual information regarding heading, time to contact, object motion and object segmentation can all be recovered to various degrees by analyzing the complex motion components of optic flow; for review see (Andersen, 1997, Lappe, et al., 1999). While the usefulness of such information for visually guided actions and navigation is clear, the complex neural mechanisms underlying its processing and extraction remain, for the most part, poorly understood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adini, Y., Sagi, D., and Tsodyks, M. (1997). Excitatory-inhibitory network in the visual cortex: Psychophysical evidence. Proc. Natl. Acad. Sci., 94, 1 0426–1 043 1.

    Google Scholar 

  • Amir, Y., Harel, M., and Malach, R. (1993). Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex. J. Comp. Neurology, 334, 19–46.

    Article  CAS  Google Scholar 

  • Andersen, R. A. (1997). Neural mechanisms of visual motion perception in primates. Neuron, 18, 865–872.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, R. A., Shenoy, K. V., Crowell, J. A., & Bradley, D. C. (2000). Neural Mechanisms for Self-Motion Perception in Area MST. In: M. Lappe (Ed.). Neuronal Processing of Optic Flow, 44 (pp. 219–234 ). New York: Academic Press.

    Chapter  Google Scholar 

  • Ball, K., & Sekuler, R. (1987). Direction-specific improvement in motion discrimination. Vision Res., 27 (6), 953–965.

    Article  PubMed  CAS  Google Scholar 

  • Beardsley, S. A., & Vaina, L. M. (1998). Computational modeling of optic flow selectivity in MSTd neurons. Network: Comput. Neural Syst., 9, 467–493.

    Google Scholar 

  • Beardsley, S. A., & Vaina, L. M. (2001). A laterally interconnected neural architecture in MST accounts for psychophysical discrimination of complex motion patterns. J. Comput. Neurosci., 10, 255–280.

    Article  PubMed  CAS  Google Scholar 

  • Beardsley, S. A., Ward, R. L., & Vaina, L. M. (2003). A feed-forward network model of spiral-planar tuning in MSTd. Vision Res., 43, 577–595.

    Google Scholar 

  • Ben-Yishai, B., Bar-Or, R. L., & Sompolinsky, H. (1995). Theory of orientation tuning in visual cortex. Proc. Natl. Acad. Sci., 92, 3844–3848.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bevington, P. (1969). Data Reduction and Error Analysis for the Physical Sciences, (p. 336 ). New York: McGraw-Hill.

    Google Scholar 

  • Boussaoud, D., Ungerleider, L. G., & Desimone, R. (1990). Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J. Comp. Neurol., 296 (3), 462–495.

    Article  PubMed  CAS  Google Scholar 

  • Bremmer, F., Duhamel, J.-R., Ben Hamed, S., & Werner, G. (2000). Stages of Self-Motion Processing in Primate Posterior Parietal Cortex. In: M. Lappe (Ed.) Neuronal Processing of Optic Flow, 44 (pp. 173–198 ). New York: Academic Press.

    Chapter  Google Scholar 

  • Britten, K. H., Newsome, W. T., Shadlen, M. N., Celebrini, S., & Movshon, J. A. (1996). A relationship between behavioral choice and the visual responses of neurons in macaque MT. Vis. Neurosci., 13 (1), 87–100.

    Google Scholar 

  • Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: a comparison of neuronal and psychophysical performance. J Neurosci., 12 (12), 4745–4765.

    Google Scholar 

  • Britten, K. H., & van Wezel, R. J. A. (1998). Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat. Neurosci., 1, 59–63.

    Article  PubMed  CAS  Google Scholar 

  • Burr, D. C., Morrone, M. C., & Vaina, L. M. (1998). Large receptive fields for optic flow detection in humans. Vision Res., 38 (12), 1731–1743.

    Google Scholar 

  • Carandini, M., & Ringach, D. L. (1997). Prediction of a recurrent model of orientation selectivity. Vision Res., 37, 3061–3071.

    Article  PubMed  CAS  Google Scholar 

  • Celebrini, S., & Newsome, W. T. (1994). Neuronal and psychophysical sensitivity to motion signals in extrastriate area MST of the macaque monkey. J. Neurosci., 14 (7), 4109–4124.

    Google Scholar 

  • Celebrini, S., & Newsome, W. T. (1995). Microstimulation of extrastriate area MST influences performance on a direction discrimination task. J. Neurphysiol., 73 (2), 437–448.

    Google Scholar 

  • Chey, J., Grossberg, S., & Mingolla, E. (1998). Neural dynamics of motion processing and speed discrimination. Vision Res., 38, 2769–2786.

    Article  PubMed  CAS  Google Scholar 

  • Coletta, N. J., Segu, P., & Tiana, C. L. (1993). An oblique effect in parafovial motion perception. Vision Res., 33 (18), 2747–2756.

    Google Scholar 

  • de Jong, B. M., Shipp, S., Skidmore, B., Frackowiak, R. S. J., & Zeki, S. (1994). The cerebral activity related to the visual perception of forward motion in depth. Brain, 117, 1039–1054.

    Article  PubMed  Google Scholar 

  • deCharms, R. C., & Zador, A. (2000). Neural representation and the cortical code. Annu. Rev. Neurosci., (23), 613–647.

    Google Scholar 

  • DeYoe, E. A., & Van Essen, D. C. (1988). Concurrent processing streams in monkey visual cortex. Trends Neurosci., 11 (5), 219–226.

    Article  PubMed  CAS  Google Scholar 

  • Duffy, C. J. (2000). Optic Flow Analysis for Self-Movement Perception. In: M. Lappe (Ed.) Neuronal Processing of Optic Flow, 44 (pp. 199–218 ). New York: Academic Press.

    Chapter  Google Scholar 

  • Duffy, C. J., & Wurtz, R. H. (1991a). Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J. Neurophysiol., 65 (6), 1329–1345.

    Google Scholar 

  • Duffy, C. J., & Wurtz, R. H. (1991b). Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small field stimuli. J. Neurophysiol., 65 (6), 1346–1359.

    Google Scholar 

  • Duffy, C. J., & Wurtz, R. H. (1995). Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J. Neurosci., 15 (7), 5192–5208.

    Google Scholar 

  • Duffy, C. J., & Wurtz, R. H. (1997a). Medial superior temporal area neurons respond to speed patterns in optic flow. J. Neurosci., 17 (8), 2839–2851.

    Google Scholar 

  • Duffy, C. J., & Wurtz, R. H. (1997b). Planar directional contributions to optic flow responses in MST neurons. J. Neurophysiol., 77, 782–796.

    PubMed  CAS  Google Scholar 

  • Edelman, S. (1996). Why Have Lateral Connections in the Visual Cortex? In: J. Sirosh, R. Miikkulainen, & Y. Choe (Eds.), Lateral Interactions in the Cortex: Structure and Function, Electronic Book (http://www.cs.utexas.edu/users/nn/webpubs/htmlbook96/edelman/). Austin: The UTCS Neural Networks Research Group.

    Google Scholar 

  • Edwards, M., & Badcock, D. R. (1993). Asymmetries in the sensitivity to motion in depth: a centripetal bias. Perception, 22, 1013–1023.

    Article  PubMed  CAS  Google Scholar 

  • Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex, 1, 1–47.

    Article  PubMed  CAS  Google Scholar 

  • Foldiak, P. (1993). The ‘Ideal Homunculus’: Statistical Inference from Neural Population Responses. In: F.H. Eeckman, & J.M. Bower (Eds.), Computation and Neural Systems (pp. 55–60 ). Norwell: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Freeman, T. C., & Harris, M. G. (1992). Human sensitivity to expanding and rotating motion: Effects of complementary masking and directional structure. Vision Res., 32 (1), 81–87.

    Google Scholar 

  • Geesaman, B. J., & Andersen, R. A. (1996). The analysis of complex motion patterns by form/cue invariant MSTd neurons. J. Neurosci., 16 (15), 4716–4732.

    Google Scholar 

  • Georgopoulos, A. P., Kettner, R. E., & Schwartz, A. B. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J. Neurosci., 8 (8), 2928–2937.

    Google Scholar 

  • Georgopoulos, A. P., Schwartz, A. B., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233 (26), 1416–1419.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, J. J. (1950). The Perception of the Visual World. ( Boston: Houghton Mifflin).

    Google Scholar 

  • Gilbert, C., Das, A., Ito, M., Kapadia, M., & Westheimer, G. (1996). Spatial integration and cortical dynamics. Proc. Natl. Acad. Sci. USA, 93, 615–622.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gilbert, C., & Wiesel, T. (1989). Columnar specificity of instrinsic horizontal and corticocortical connections in cat visual cortex. J. Neurosci., 9 (7), 2432–2442.

    Google Scholar 

  • Gilbert, C. D. (1985). Horizontal integration in the neocortex. Trends Neurosci., (April), 160–165.

    Google Scholar 

  • Gilbert, C. D. (1992). Horizontal integration and cortical dynamics. Neuron, 9, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, C. D., & Wiesel, T. N. (1985). Intrisic connectivity and receptive field properties in visual cortex. Vision Res., 25 (3), 365–374.

    Google Scholar 

  • Graziano, M. S., Anderson, R. A., & Snowden, R. (1994). Tuning of MST neurons to spiral motions. J. Neurosci., 14 (1), 54–67.

    Google Scholar 

  • Greenlee, M. W. (2000). Human cortical areas underlying the perception of optic flow: brain imaging studies. Int. Rev. Neurobiol., 44, 269–292.

    Article  PubMed  CAS  Google Scholar 

  • Grinvald, A., Lieke, E., Frostig, R. D., Gilbert, C. D., & Wiesel, T. N. (1986). Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature, 324, 361–364.

    Article  PubMed  CAS  Google Scholar 

  • Gros, B. L., Blake, R., & Hiris, E. (1998). Anisotropies in visual motion perception: a fresh look. J. Opt. Soc. Am. A, 15 (8), 2003–2011.

    Google Scholar 

  • Grossberg, S., Mignolla, E., & Pack, C. (1999). A neural model of motion processing and visual navigation by cortical area MST. Cereb. Cortex, 9 (8), 878–895.

    Google Scholar 

  • Grossberg, S., & Williamson, J. R. (2001). A neural model of how horizontal and interlaminar connections of visual cortex develop into adult circuits that carry out perceptual grouping and learning. Cereb. Cortex, 11, 37–58.

    Article  PubMed  CAS  Google Scholar 

  • Hatsopoulos, N., & Warren, W. J. (1991). Visual navigation with a neural network. Neural Netw., 4, 303–317.

    Article  Google Scholar 

  • Haykin, S. (1999). Neural Networks: A Comprehensive Foundation, (p. 842 ). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Heeger, D. J. (1999). Linking visual perception with human brain activity. Curr. Opin. Neurobiol., 9 (4), 474–479.

    Google Scholar 

  • Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the Theory of Neural Computation. A Lecture Notes Volume in the Santa Fe Institute Studies in the Sciences of Complexity (p. 327 ). New York: Addison-Wesley Publishing Company.

    Google Scholar 

  • Kalaska, J. F., Caminiti, R., & Georgopoulos, A. P. (1983). Cortical mechanisms related to the direction of two-dimensional arm movements: relations in parietal area 5 and comparison with motor cortex. Exp. Brain Res., 51, 247–260.

    Article  PubMed  CAS  Google Scholar 

  • Kisvarday, Z., Toth, E., Rausch, M., & Eysel, U. (1997). Orientation-specific relationship between populations of excitatory and inhibitory lateral connections in the visual cortex of the cat. Cereb. Cortex, 7 (7), 605–618.

    Google Scholar 

  • Koechlin, E., Anton, J., & Burnod, Y. (1999). Bayesian interference in populations of cortical neurons: A model of motion integration and segmentation in area MT. Biol. Cybern., 80, 25–44.

    Article  PubMed  CAS  Google Scholar 

  • Lagae, L., Maes, H., Raiguel, S., Xiao, D.-K., & Orban, G. A. (1994). Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. J. Neurophysiol., 71 (5), 1597–1626.

    Google Scholar 

  • Lappe, M. (2000). Computational mechanisms for optic flow analysis in primate cortex. In: M. Lappe (Ed.) Neuronal Processing of Optic Flow, 44 (pp. 235–268 ). New York: Academic Press.

    Chapter  Google Scholar 

  • Lappe, M., Bremmer, F., Pekel, M., Thiele, A., & Hoffmann, K. (1996). Optic flow processing in monkey STS: A theoretical and experimental approach. J. Neurosci., 16 (19), 6265–6285.

    Google Scholar 

  • Lappe, M., Bremmer, F., & van den Berg, A. V. (1999). Perception of self-motion from visual flow. Trends Cogn. Sci., 3 (9), 329–336.

    Article  PubMed  Google Scholar 

  • Lappe, M., & Duffy, C. (1999). Optic flow illusion and single neuron behavior reconciled by a population model. Eur. J. Neurosci., 11, 2323–2331.

    Article  PubMed  CAS  Google Scholar 

  • Lappe, M., & Rauschecker, J. P. (1993). A neural network for the processing of optic flow from ego-motion in man and higher mammals. Neural Comput., 5, 374–391.

    Article  Google Scholar 

  • Lappe, M., & Rauschecker, J. P. (1995). Motion anisotropies and heading detection. Biol. Cybern., 72 (3), 261–277.

    Google Scholar 

  • Liu, L., & Hulle, V. (1998). Modeling the surround of MT cells and their selectivity for surface orientation in depth specified by motion. Neural Comput., 10, 295–312.

    Article  PubMed  CAS  Google Scholar 

  • Lukashin, A. V., & Georgopoulos, A. P. (1993). A dynamical neural network model for motor cortical activity during movement: population coding of movement trajectories. Biol. Cybern., 69, 517–524.

    Article  PubMed  CAS  Google Scholar 

  • Lukashin, A. V., & Georgopoulos, A. P. (1994). A neural network for coding of trajectories by time series of neuronal population vectors. Neural Comput., 6, 19–28.

    Article  Google Scholar 

  • Lukashin, A. V., Wilcox, G. L., & Georgopoulos, A. P. (1996). Modeling of directional operations in the motor cortex: a noisy network of spiking neurons is trained to generate a neural-vector trajectory. Neural Netw., 9 (3), 397–410.

    Google Scholar 

  • Lund, J., Yoshioka, T., & Levitt, J. (1993). Comparison of intrinsic connectivity in different areas of the macaque monkey cerebral cortex. Cereb. Cortex, 3 (2), 148–162.

    Google Scholar 

  • Malach, R., Schirman, T., Harel, M., Tootell, R., & Malonek, D. (1997). Organization of intrinsic connections in owl monkey area MT. Cereb. Cortex, 7 (4), 386–393.

    Google Scholar 

  • Matthews, N., & Qian, N. (1999). Axis-of-motion affects direction discrimination, not speed discrimination. Vision Res., 39, 2205–2211.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, N., & Welch, L. (1997). Velocity-dependent improvements in single-dot direction discrimination. Percept. Psychophys., 59 (1), 60–72.

    Google Scholar 

  • Maunsell, J. H., & Van Essen, D. C. (1983). The connections of the middle temporal visual area (MT) and their relationship to a cortical heirarchy in the macaque monkey. J. Neurosci., 3 (12), 2563–2586.

    Google Scholar 

  • McGuire, B., Gilbert, C., Rivlin, P., & Wiesel, T. (1991). Targets of horizontal connections in macaque primary visual cortex. J. Comp. Neurol., 305, 370–392.

    Article  PubMed  CAS  Google Scholar 

  • Meese, T., & Harris, M. (2001a). Independent detectors for expansion and rotation, and for orthogonal components of deformation. Perception, 30, 1189–1202.

    Article  PubMed  CAS  Google Scholar 

  • Meese, T. S., & Harris, M. G. (2001b). Broad direction bandwidths for complex motion mechanisms. Vision Res, 41 (15), 1901–1914.

    Article  PubMed  CAS  Google Scholar 

  • Meese, T. S., & Harris, S. J. (2002). Spiral mechanisms are required to account for summation of complex motion components. Vision Res., 42, 1073–1080.

    Article  PubMed  Google Scholar 

  • Miikkulainen, R., and Sirosh, J. (1996). Introduction: The Emerging Understanding of Lateral Interactions in the Cortex. In: J. Sirosh, R. Miikkulainen, & Y. Choe (Eds.), Lateral Interactions in the Cortex: Structure and Function, Electronic Book (http://www.cs.utexas.edu/users/nn/web-pubs/htmlbook96/miikkulainen/). Austin: The UTCS Neural Networks Research Group.

    Google Scholar 

  • Morrone, C., Burr, D., & Vaina, L. (1995). Two stages of visual processing for radial and circular motion. Nature, 376, 507–509.

    Article  PubMed  CAS  Google Scholar 

  • Morrone, M. C., Burr, D. C., Di Pietro, S., & Stefanelli, M. A. (1999). Cardinal directions for visual optic flow. Curr. Biol., 9, 763–766.

    Article  PubMed  CAS  Google Scholar 

  • Morrone, M. C., Tosetti, M., Montanaro, D., Fiorentini, A., Cioni, G., & Burr, D. C. (2000). A cortical area that responds specifically to optic flow, revealed by fMRI. Nat. Neurosci., 3 (12), 1322–1328.

    Google Scholar 

  • Nowlan, S. J., and Sejnowski, T. J. (1995). A selection model for motion processing in area MT of primates. J. Neurosci., 15 (2), 1195–1214.

    Google Scholar 

  • Oram, M. W., Foldiak, P., Perrett, D. I., & Sengpiel, F. (1998). The ‘ideal homunculus’: decoding neural population signals. Trends Neurosci., 21 (8), 365–371.

    Google Scholar 

  • Orban, G. A., Lagae, L., Raiguel, S., Xiao, D., & Maes, H. (1995). The speed tuning of medial superior temporal (MST) cell responses to optic-flow components. Perception, 24 (3), 269–285.

    Google Scholar 

  • Orban, G. A., Lagae, L., Verri, A., Raiguel, S., Xiao, D., Maes, H., & Torre, V. (1992). First-order analysis of optical flow in monkey brain. Proc. Natl. Acad. Sci. USA, 89, 2595–2599.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Perrone, J., & Stone, L. (1994). A model of self-motion estimation within primate extrastriate visual cortex. Vision Res., 34 (21), 2917–2938.

    Google Scholar 

  • Perrone, J. A., & Stone, L. S. (1998). Emulating the visual receptive-field properties of MST neurons with a template model of heading estimation. J. Neurosci., 18 (15), 5958–5975.

    Google Scholar 

  • Pitts, R. I., Sundareswaran, V., & Vaina, L. M. (1997). A model of position-invariant, optic flow pattern-selective cells. In: Computational Neuroscience: Trends in Research 1997 (pp. 171–176 ). New York: Plenum Publishing Corporation.

    Chapter  Google Scholar 

  • Pouget, A., Zhang, K., Deneve, S., & Latham, P. E. (1998). Statistically efficient estimation using population coding. Neural Comput., 10, 373–401.

    Article  PubMed  CAS  Google Scholar 

  • Raymond, J. E. (1994). Directional anisotropy of motion sensitivity across the visual field. Vision Res., 34 (8), 1029–1039.

    Google Scholar 

  • Rees, G., Friston, K., & Koch, C. (2000). A direct quantative relationship between the function properties of human and macaque V5. Nat. Neurosci., 3 (7), 716–723.

    Google Scholar 

  • Regan, D., & Beverley, K. (1978). Looming detectors in the human visual pathway. Vision Res., 18, 415–421.

    Article  PubMed  CAS  Google Scholar 

  • Regan, D., & Beverley, K. I. (1979). Visually guided locomotion: Psychophysical evidence for a neural mechanism sensitive to flow patterns. Science, 205, 311–313.

    Article  PubMed  CAS  Google Scholar 

  • Royden, C. S. (1997). Mathematical analysis of motion-opponent mechanisms used in the determination of heading and depth. J. Opt. Soc. Am. A, 14, 2128–2143.

    Article  CAS  Google Scholar 

  • Rutschmann, R. M., Schrauf, M., & Greenlee, M. W. (2000). Brain activation during dichoptic presentation of optic flow stimuli. Exp. Brain Res., 134, 533–537.

    Article  PubMed  CAS  Google Scholar 

  • Saito, H.-a., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., & Iwai, E. (1986). Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J. Neurosci., 6 (1), 145–157.

    Google Scholar 

  • Sakai, K., & Miyashita, Y. (1991). Neural organization for the long-term memory of paired associates. Nature, 354, 152–155.

    Article  PubMed  CAS  Google Scholar 

  • Salinas, E., & Abbott, L. (1994). Vector reconstruction from firing rates. J. Comput. Neurosci., 1, 89–107.

    Article  PubMed  CAS  Google Scholar 

  • Salinas, E., & Abbott, L. (1995). Transfer of coded information from sensory to motor networks. J. Neurosci., 15, 6461–6474.

    PubMed  CAS  Google Scholar 

  • Salzman, C. D., Britten, K. H., & Newsome, W. T. (1990). Cortical microstimulation influences perceptual judgements of motion direction. Nature, 346, 174–177.

    Article  PubMed  CAS  Google Scholar 

  • Salzman, C. D., Murasugi, C. M., Britten, K., & Newsome, W. T. (1992). Microstimulation in visual area MT: effects on direction discrimination performance. J. Neurosci., 12 (6), 2331–2355.

    Google Scholar 

  • Sanger, T. D. (1996). Probability density estimation for the interpretation of neural population codes. J. Neurophysiol., 76 (4), 2790–2793.

    Google Scholar 

  • Schaafsma, S. J., & Duysens, J. (1996). Neurons in the ventral intraparietal area of awake macaque monkey closely resemble neurons in the dorsal part of the medial superior temporal area in their responses to optic flow patterns. J. Neurophysiol., 76 (6), 4056–4068.

    Google Scholar 

  • Schwartz, A. B., Kettner, R. E., & Georgopoulos, A. P. (1988). Primate motor cortex and free arm movements to visual targets in three-dimensional space. I. Relations between single cell discharge and direction of movement. J. Neurosci., 8 (8), 2913–2827.

    Google Scholar 

  • Seung, H. S., & Sompolinsky, H. (1993). Simple models for reading neuronal population codes. Proc. Natl. Acad. Sci. USA, 90, 10749–10753.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shadlen, M., & Newsome, W. (1998). The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J. Neurosci., 18 (10), 3870–3896.

    Google Scholar 

  • Shadlen, M. N., & Newsome, W. T. (1994). Noise, neural codes, and cortical organization. Curr. Opin. Neurobiol., 4, 569–579.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, R. M., & Read, H. L. (1997). Analysis of optic flow in the monkey parietal area 7a. Cereb. Cortex, 7 (4), 327–346.

    Google Scholar 

  • Snippe, H. (1996). Parameter extraction from population codes: A critical assessment. Neural Comput., 8, 511–530.

    Article  PubMed  CAS  Google Scholar 

  • Snowden, R. J., & Milne, A. B. (1996). The effects of adapting to complex motions: position invariance and tuning to spiral motions. J. Cognit. Neurosci., 8 (4), 412–429.

    Google Scholar 

  • Snowden, R. J., & Milne, A. B. (1997). Phantom motion aftereffects–evidence of detectors for the analysis of optic flow. Curr. Biol., 7, 717–722.

    Article  PubMed  CAS  Google Scholar 

  • Softky, W. (1995). Simple codes versus efficient codes. Curr. Opin. Neurobiol., 5, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Softky, W., & Koch, C. (1993). The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci., 13 (1), 334–350.

    Google Scholar 

  • Stemmler, M., Usher, M., & Niebur, E. (1995). Lateral interactions in primary visual cortex: A model bridging physiology and psychophysics. Science, 269, 1877–1880.

    Article  PubMed  CAS  Google Scholar 

  • Sundareswaran, V., & Vaina, L. M. (1996). Adaptive computational models of fast learning of motion direction discrimination. Biol. Cybern., 74, 319–329.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., Fukada, Y., & Saito, H.-A. (1989). Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol., 62 (3), 642–656.

    Google Scholar 

  • Tanaka, K., & Saito, H.-A. (1989). Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J. Neurophysiol., 62 (3), 626–641.

    Google Scholar 

  • Taylor, J. G., & Alavi, F. N. (1996). A Basis for Long-Range Inhibition Across Cortex. In: J. Sirosh, R. Miikkulainen, & Y. Choe (Eds.), Lateral Interactions in the Cortex: Structure and Function, Electronic Book (http://www.cs.utexas.edu/users/nn/webpubs/htmlbook96/taylor/). Austin: The UTCS Neural Networks Research Group.

    Google Scholar 

  • Te Pas, S. F., Kappers, A. M., & Koenderink, J. J. (1996). Detection of first-order structure in optic flow fields. Vision Res., 36 (2), 259–270.

    Google Scholar 

  • Teich, A. F., & Qian, N. (2002). Learning and adaptation in a recurrent model of V1 orientation selectivity. J. Neurophysiol., in press.

    Google Scholar 

  • Tootell, R. B. H., Reppas, J. B., Kwong, K. K., Malach, R., Born, R. T., Brady, T. J., Rosen, B. R., & Belliveau, J. W. (1995). Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci., 15 (4), 3215–3230.

    Google Scholar 

  • Ts’o, D., Gilbert, C. D., & Wiesel, T. N. (1986). Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci., 6 (4), 1160–1170.

    Google Scholar 

  • Vaina, L. M. (1998). Complex motion perception and its deficits. Curr. Opin. Neurobiol., 8 (4), 494–502.

    Google Scholar 

  • Vaina, L. M., Solovyev, S., Kopcik, M., & Chowdhury, S. (2000). Impaired self-motion perception from optic flow: a psychophysical and fMRI study of a patient with a left occipital lobe lesion. Soc. Neurosci. Abst., 26, 1065.

    Google Scholar 

  • Vaina, L. M., Sundareswaran, V., & Harris, J. G. (1995). Learning to ignore: psychophysics and computational modeling of fast learning of direction in noisy motion stimuli. Cognit. Brain Res, 2 (3), 155–163.

    Article  CAS  Google Scholar 

  • van den Berg, A. V. (2000). Human Ego-Motion Perception. In: M. Lappe (Ed.) Neuronal Processing of Optic Flow, 44 (pp. 3–25 ). New York: Academic Press.

    Chapter  Google Scholar 

  • Van Essen, D. C., & Maunsell, J. H. R. (1983). Hierarchical organization and functional streams in the visual cortex. Trends Neurosci., 6 (9), 370–375.

    Google Scholar 

  • Wang, R. (1995). A simple competitive account of some response properties of visual neurons in area MSTd. Neural Comput., 7, 290–306.

    Google Scholar 

  • Wang, R. (1996). A network model for the optic flow computation of the MST neurons. Neural Netw., 9 (3), 411–426.

    Google Scholar 

  • Wiskott, L., & von der Malsburg, C. (1996). Face Recognition by Dynamic Link Matching. In: J. Sirosh, R. Miikkulainen, & Y. Choe (Eds.), Lateral Interactions in the Cortex: Structure and Function, Electronic Book (http://www.cs.utexas.edu/users/nn/webpubs/htmlbook96/wiskott/). Austin: The UTCS Neural Networks Research Group.

    Google Scholar 

  • Worgotter, F., Niebur, E., & Christof, K. (1991). Isotropic connections generate functional asymmetrical behavior in visual cortical cells. J. Neurophysiol, 66 (2), 444–459.

    Google Scholar 

  • Zemel, R., Dayan, P., & Pouget, A. (1998). Probabilistic interpretation of population codes. Neural Comput., 10, 403–430.

    Google Scholar 

  • Zemel, R. S., & Sejnowski, T. J. (1998). A model for encoding multiple object motions and self-motion in area MST of primate visual cortex. J. Neurosci., 18 (1), 531–547.

    Google Scholar 

  • Zhang, K., Sereno, M. I., & Sereno, M. E. (1993). Emergence of position-independent detectors of sense of rotation and dilation with Hebbian learning: an analysis. Neural Comput., 5, 597–612.

    Article  Google Scholar 

  • Zhao, L., Vaina, L. M., LeMay, M., Kader, B., Chou, I. S., & Kemper, T. (1995). Are there specific anatomical correlates of global motion perception in the human visual cortex? Invest. Ophthalmol. Vis. Sci., 36 (4), S56.

    Google Scholar 

  • Zohary, E. (1992). Population coding of visual stimuli cortical neurons tuned to more than one dimension. Biol. Cybern., 66, 265–272.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beardsley, S.A., Vaina, L.M. (2004). Linking Perception and Neurophysiology for Motion Pattern Processing: The Computational Power of Inhibitory Connections in Cortex. In: Vaina, L.M., Beardsley, S.A., Rushton, S.K. (eds) Optic Flow and Beyond. Synthese Library, vol 324. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2092-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2092-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6589-6

  • Online ISBN: 978-1-4020-2092-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics