Skip to main content

Planktonic microbial assemblages and the potential effects of metazooplankton predation on the food web of lakes from the maritime Antarctica and sub-Antarctic islands

  • Original Paper
  • Chapter
  • First Online:
Life in Extreme Environments

Abstract

Antarctica is the continent with the harshest climate on the Earth. Antarctic lakes, however, usually presents liquid water, at least during part of the year or below the ice cover, especially those from the sub-Antarctic islands and the maritime Antarctic region where climatic conditions are less extreme. Planktonic communities in these lakes are mostly dominated by microorganisms, including bacteria and phototrophic and heterotrophic protists, and by metazooplankton, usually represented by rotifers and calanoid copepods, the latter mainly from the genus Boeckella. Here I report and discuss on studies performed during the last decade that show that there is a potential for top–down control of the structure of the planktonic microbial food web in sub-Antarctic and maritime Antarctic lakes. In some of the studied lakes, the effect of copepod grazing on protozoa, either ciliates or flagellates, depending on size of both the predator and the prey, could promote cascade effects that would be transmitted to the bacterioplankton assemblage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adrian R, Schneider-Olt B (1999) Top-down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. J Plankton Res 21:2175–2190

    Article  Google Scholar 

  • Allende L, Izaguirre I (2003) The role of physical stability on the establishment of steady states in the phytoplankton community of two Maritime Antarctic lakes. Hydrobiologia 502:211–224

    Article  Google Scholar 

  • Almada P, Allende L, Tell G, Izaguirre I (2004) Experimental evidence of the grazing impact of Boeckella poppei on phytoplankton in a maritime Antarctic lake. Polar Biol 28:39–46

    Google Scholar 

  • Arnold RJ, Convey P (1998) The life history of the diving beetle Lancetes angusticollis (Curtis) (Coleoptera:Dytiscidae), on sub-Antarctic South Georgia. Polar Biol 20:153–160

    Article  Google Scholar 

  • Atkinson A (1995) Omnivory and feeding selectivity in 5 copepod species during spring in the Bellingshausen Sea, Antarctica. ICES J Mar Sci 52:385–396

    Article  Google Scholar 

  • Atkinson A, Whitehouse MJ (2001) Ammonium regeneration by Antarctic mesozooplankton: an allometric approach. Mar Biol 139:301–311

    Article  CAS  Google Scholar 

  • Azam F, Fenchel T, Field JG, Grey JS, Meyer-Reil KA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Google Scholar 

  • Balseiro EG, Modenutti BE, Queimaliños CP (2001) Feeding of Boeckella gracilipes (Copepoda, Calanoida) on ciliates and phytoflagellates in an ultraoligotrophic Andean lake. J Plankton Res 23:849–857

    Article  Google Scholar 

  • Bayliss P, Ellis-Evans JC, Laybourn-Parry J (1997) Temporal patterns of primary production in a large ultra-oligotrophic Antarctic freshwater lake. Polar Biol 18:363–370

    Article  Google Scholar 

  • Bayly IAE (1992) Fusion of the genera Boeckella and Pseudoboeckella (copepoda) and revision of their species from south-America and sub-Antarctic islands. Rev Chil Hist Nat 65:17–63

    Google Scholar 

  • Bayly IAE, Gibson JAE, Wagner B, Swadling KM (2003) Taxonomy, ecology and zoogeography of two East Antarctic freshwater calanoid copepod species: Boeckella poppei and Gladioferans antarcticus. Antarctic Sci 15:439–448

    Article  Google Scholar 

  • Begon M, Harper JL, Townsend CR (2005) Ecology: from individuals to ecosystems. Blackwell Scientific Publishers, Oxford, 1068 pp

    Google Scholar 

  • Bell EM, Laybourn-Parry J (1999) Annual plankton dynamics in an Antarctic saline lake. Freshwater Biol 41:507–519

    Article  Google Scholar 

  • Berninger UG, Finlay BJ, Kuuppo-Leinikki P (1991) Protozoan control of bacterial abundances in freshwater. Limnol Oceanogr 36:139–147

    Google Scholar 

  • Bertilsson S, Hansson LA, Graneli W, Philibert A (2003) Size-selective predation on pelagic microorganisms in Arctic freshwaters. J Plankton Res 25:621–631

    Article  Google Scholar 

  • Bonilla S, Villeneuve V, Vincent WF (2005) Benthic and planktonic algal communities in a high Arctic lake: pigment structure and contrasting responses to nutrient enrichment. J Phycol 41:1120–1130

    Article  CAS  Google Scholar 

  • Borer ET, Seabloom EW, Shurin JB, Anderson KE, Blanchette CA, Broitman B, Cooper SD, Halpern BS (2005) What determines the strength of a trophic cascade? Ecology 86:528–537

    Article  Google Scholar 

  • Burns CW, Schallenberg M (1996) Relative importance of cladocerans, copepods and nutrients on the microbial food web of a mesotrophic lake. J Plankton Res 18:683–714

    Article  Google Scholar 

  • Burns CW, Schallenberg M (1998) Impacts of nutrients and zooplankton on the microbial food web of an ultra-oligotrophic lake. J Plankton Res 20:1501–1525

    Article  Google Scholar 

  • Butler H (1999a) Seasonal dynamics of the planktonic microbial community in a maritime Antarctic lake undergoing eutrophication. J Plankton Res 21:2393–2419

    Article  Google Scholar 

  • Butler H (1999b) Temporal plankton dynamics in a maritime Antarctic lake. Arch Hydrobiol 146:311–339

    CAS  Google Scholar 

  • Butler HG, Edworthy MG, Ellis-Evans JC (2000) Temporal plankton dynamics in an oligotrophic maritime Antarctic lake. Freshwater Biol 43:215–230

    Article  Google Scholar 

  • Butler H, Atkinson A, Gordon M (2005) Omnivory and predation impact of the calanoid copepod Boeckella poppei in a maritime Antarctic lake. Polar Biol 28:815–821

    Article  Google Scholar 

  • Carpenter SR (1996) Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77:677–680

    Article  Google Scholar 

  • Carpenter SR (1999) Microcosm experiments have limited relevance for community and ecosystem ecology: Reply. Ecology 80:1085–1088

    Google Scholar 

  • Carpenter SA, Kitchell JF, Hodgson J (1985) Cascading trophic interactions and lake productivity. Bioscience 35:634–639

    Article  Google Scholar 

  • Carpenter SR, Chisholm SW, Krebs CJ, Schindler DW, Wright RF (1995) Ecosystem experiments. Science 269:324–327

    Article  CAS  PubMed  Google Scholar 

  • Carpenter SR, Cole JJ, Hodgson JR, Kitchell JF, Pace ML, Bade D, Cottingham KL, Essington TE, Houser JN, Schindler DE (2001) Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71:163–186

    Google Scholar 

  • Carrick HJ, Fahnenstiel GL, Stoezmer EF, Wetzel RG (1991) The importance of zooplankton-protozoan trophic coupling in Lake Michigan. Limnol Oceanogr 36:1335–1345

    Google Scholar 

  • Clarke A, Ellis-Evans JC, Sanders MW, Holmes LJ (1989) Patterns of energy-storage in Pseudoboeckella poppei (Crustacea, Copepoda) from 2 contrasting lakes on Signy island, Antarctica. Hydrobiologia 172:183–191

    Article  Google Scholar 

  • Convey P (1996) The influence of environmental characteristics on life history attributes on Antarctic terrestrial biota. Biol Rev 71:191–225

    Google Scholar 

  • Convey P, Pugh PJA, Jackson C, Murray AW, Ruhland CT, Xiong FS, Day TA (2002) Response of Antarctic terrestrial microarthropods to long-term climate manipulations. Ecology 83:3130–3140

    Google Scholar 

  • Currie DJ, Dilwortth-Christie P, Chapleau F (1999) Assessing the strength of top-down influences on plankton abundance in unmanipulated lakes. Can J Fish Aquat Sci 56:427–436

    Article  Google Scholar 

  • Dartnall HJG (2005) Freshwater invertebrates of sub-Antarctic South Georgia. J Nat History 39:3321–3342

    Article  Google Scholar 

  • Dartnall HJG, Hollwedel W, de Paggi JC (2005) The freshwater fauna of Macquarie Island, including a redescription of the endemic water-flea Daphnia gelida (Brady) (Anomopoda: Crustacea). Polar Biol 28:922–939

    Article  Google Scholar 

  • DeMott WR (1988) Discrimination between algae and artificial particles by freshwater and marine copepods. Limnol Oceanogr 33:397–408

    Google Scholar 

  • DeMott WR, Watson MD (1991) Remote detection of algae by copepods: responses to algal size, odors and motility. J Plankton Res 13:1203–1222

    Article  Google Scholar 

  • Drago EC (1989) Thermal summer characteristics of lakes and ponds on Deception Island, Antarctica. Hydrobiologia. 184:51–60

    Google Scholar 

  • Drenner RW, Mazumder A (1999) Microcosm experiments have limited relevance for community and ecosystem ecology: comment. Ecology 80:1081–1085

    Google Scholar 

  • Elser JJ, Elser MM, MacKay NA, Carpenter SR (1988) Zooplankton-mediated transitions between N-and P-limited algal growth. Limnol Oceanogr 33:1–14

    CAS  Google Scholar 

  • Ellis-Evans JC (1996) Microbial diversity and function in Antarctic freshwater ecosystems. Biodiv Conserv 5:1395–1431

    Article  Google Scholar 

  • Ellis-Evans JC, Laybourn Parry J, Bayliss PR, Perriss SJ (1998) Physical, chemical and microbial community characteristics of lakes of the Lasermann Hills, Continental Antarctica. Arch Hydrobiol 141:209–230

    CAS  Google Scholar 

  • Fenchel T (1982) Ecology of heterotrophic microflagellates. IV Quantitative occurrence and importance as bacterial consumers. Mar Ecol Prog Ser 9:35–42

    Google Scholar 

  • Fernandez-Valiente E, Quesada A, Howard-Williams C, Hawes I (2001) N2 fixation in cyanobacterial mats from ponds on the McMurdo Ice Shelf, Antarctica. Microbial Ecol 42:338–349

    Article  CAS  Google Scholar 

  • Fritsen CH, Priscu JC (1998) Cyanobacterial assemblages in permanent ice covers on Antarctic lakes: distribution, growth rate, and temperature response of photosynthesis. J Phycol 10:587–597

    Article  Google Scholar 

  • Fountain AG, Berry Lyons W, Burkins MB, Dana GL, Doran PT, Lewis KJ, McKnight DM, Moorhead DLL, Parsons AN, Priscu JC, Wall DH, Wharton RA, Ross VA (1999) Physical control on the Taylor Valley Ecosystem, Antarctica. Bioscience 49:961–971

    Article  Google Scholar 

  • Frenot Y, Chown SL, Whinam J, Selkirk PM, Convey P, Skotnicki M, Bergstrom DM (2005) Biological invasions in the Antarctic: extent, impacts and implications. Biol Rev 80:45–72

    Article  PubMed  Google Scholar 

  • Gasol JM, Pedrós-Alio C, Vaque D (2002) Regulation of bacterial assemblages in oligotrophic plankton systems. Antonie van Leeuwenhoek 81:435–452

    Article  PubMed  CAS  Google Scholar 

  • Gasparon G, Burgess JS (2000) Human impacts in Antarctica trace-element geochemistry of freshwater lakes in the Larsemann Hills, East Antarctica. Environ Geol 39:963–976

    Article  CAS  Google Scholar 

  • Geider RJ, Delucia EH, Falkowski PG, Finzi AC, Grime JP, Grace J, Kana TM, La Roche J, Long SP, Osborne BA, Platt T, Prentice C, Raven JA, Schlesinger WH, Smetacek V, Stuart V, Sathyendranath S, Thomas RB, Vogelmann TC, Williams P, Woodward FI (2001) Primary productivity of planet Earth: biological determinants and physical constraints in terrestrial and aquatic habitats. Global Change Biology 7:849–882

    Article  Google Scholar 

  • Hahn M, Höfle MG (2001) Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol Ecol 35:113–121

    Article  PubMed  CAS  Google Scholar 

  • Hairston NG, Smith FE, Slobodkin LB (1960) Community structure, population control, and competition. Am Nat 44:421–425

    Article  Google Scholar 

  • Hansen JE, Sato M (2001) Trends of measured climate forcing agents. PNAS 98:14778–14783

    Article  PubMed  CAS  Google Scholar 

  • Hansen PJ, Bjorsen PK, Hansen BW (1997) Zooplankton grazing and growth: Sealing within the 2–2000 μm body size range. Limnol Oceanogr 42:687–704

    Article  Google Scholar 

  • Hansson LA (1992) The role of food-chain composition and nutrient availability in shaping algal biomass development. Ecology 73:241–247

    Article  Google Scholar 

  • Hansson LA, Håkansson H (1992) Diatom community response along a productivity gradient of shallow Antarctic lakes. Polar Biol 12:463–468

    Article  Google Scholar 

  • Hansson LA, Tranvik LJ (1996) Quantification of invertebrate predation and hervibory in food chains of low complexity. Oecologia 108:542–551

    Article  Google Scholar 

  • Hansson LA, Tranvik LJ (1997) Algal species composition and phosphorus recycling at contrasting grazing pressure: An experimental study in sub-Antarctic lakes with two trophic levels. Freshwater Biol 37:45–53

    Article  Google Scholar 

  • Hansson LA, Tranvik LJ (2003) Food webs in sub-Antarctic lakes: a stable isotope approach. Polar Biol 26:783–788

    Article  Google Scholar 

  • Hansson LA, Lindell M, Tranvik LJ (1993) Biomass distribution among trophic levels in lakes lacking vertebrate predators. Oikos 66:101–106

    Article  Google Scholar 

  • Hansson LA, Dartnall HJG, Ellis-Evans JC, MacAlister H, Tranvik LJ (1996) Variation in physical, chemical and biological components in the sub-Antarctic lakes of South Georgia. Ecography 19:393–403

    Article  Google Scholar 

  • Hawes I (1983a) Light climate and phytoplankton photosynthesis in maritime Antarctic lakes. Hydrobiologia 123:69–79

    Article  Google Scholar 

  • Hawes I (1983b) Nutrients and their effects on phytoplankton populations in lakes on Signy Island, Antarctica. Polar Biol 2:115–126

    Article  Google Scholar 

  • Hawes I, Schwarz AMJ (2001) Absorption and utilization of irradiance by cyanobacterial mats in two ice-covered Antarctic lakes with contrasting light climate. J Phycol 37:5–15

    Article  CAS  Google Scholar 

  • Henshaw T, Laybourn-Parry J (2002) The annual patterns of photosynthesis in two large, freshwater, ultra-oligotrophic Antarctic lakes. Polar Biol 25:744–752

    Google Scholar 

  • Heywood RB (1978) Maritime Antarctic lakes. Verh. Internat. Verein Limnol. 20:1210–1215

    Google Scholar 

  • Heywood RB, Dartnall HJG, Priddle J (1980) Characteristics and classification of the lakes of Signy Island, South-Orkney Islands, Antarctica. Freshwater Biol 10:47–59

    Article  Google Scholar 

  • Huston MA (1999) Microcosm experiments have limited relevance for community and ecosystem ecology: synthesis of comments. Ecology 80:1088–1089

    Google Scholar 

  • Imura S, Bando T, Seto K, Kudoh S, Kanda H (2003a) Distribution of aquatic mosses in the Sôya region, East Antarctica. Polar Biosci 16:1–10

    Google Scholar 

  • Imura S, Bando T, Saito S, Seto K, Kanda H (2003b) Benthic moss pillars in Antarctic lakes. Polar Biol 22:137–140

    Article  Google Scholar 

  • Izaguirre I, Mataloni G, Allende L, Vinocur A (2001) Summer fluctuations of microbial planktonic communities in a eutrophic lake -Cierva Point, Antarctica. J Plankton Res 23:1095–1109

    Article  CAS  Google Scholar 

  • Izaguirre I, Allende L, Marinone MC (2003) Comparative study of the planktonic communities of three lakes of contrasting trophic status at Hope Bay (Antarctic Peninsula). J Plankton Res 25:1079–1097

    Article  Google Scholar 

  • Jones VJ, Juggins S (1995) The construction of a diatom-based chlorophyll a transfer function and its application at three lakes on Signy Island (maritime Antarctic) subject to differing degrees of nutrient enrichment. Freshwater Biol 34:433–445

    Article  CAS  Google Scholar 

  • Jones VJ, Juggins S, Ellis-Evans JC (1993) The relationship between water chemistry and surface sediment diatom assemblages in maritime Antarctic lake. Antarctic Sci 5:339–348

    Google Scholar 

  • Jürgens K, Arndt H, Rothhaupt KO (1994) Zooplankton-mediated changes of bacterial community structure. Microbial Ecol 27:27–42

    Google Scholar 

  • Karlsson J, Byström P (2005) Littoral energy mobilization dominates energy supply for top consumers in subarctic lakes. Limnol Oceanogr 50:538–543

    Article  CAS  Google Scholar 

  • Kennedy AD (1993) Water as a limiting factor in the Antarctic terrestrial environment: A biogeographical synthesis. Arctic Alpine Res 25:308–315

    Article  Google Scholar 

  • Kennedy AD (1995) Antarctic terrestrial ecosystem response to global environmental change. Annu Rev Ecol Syst 26:683–704

    Article  Google Scholar 

  • Kiørboe T, Saiz E, Viitasalo M (1996) Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar Ecol Prog Ser 143:65–75

    Google Scholar 

  • Klein-Breteler WCM, Schotg N, Baas M, Schouten S, Kraay GW (1999) Trophic upgrading of food quality by protozoans enhancing copepod growth. Mar Biol 135:191–198

    Article  Google Scholar 

  • Kleppel GS (1993) On the diets of calanoid copepods. Mar Ecol Prog Ser 99:183–195

    Google Scholar 

  • Krebs CJ (2001) Ecology: the experimental analysis of distribution and abundance. Benjamin Cummings, San Francisco, CA, 695 pp

    Google Scholar 

  • Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 70:5963–5972

    Article  PubMed  CAS  Google Scholar 

  • Laybourn-Parry J (1997) The microbial loop in Antarctic lakes. In: Howard-Williams C, Lyons WB, Hawes I (eds) Ecosystem processes in Antarctic ice-free landscapes. Balkema, Rotterdam, pp 231–240

    Google Scholar 

  • Laybourn-Parry J (2002) Survival mechanisms in Antarctic lakes. Phil Trans Roy Soc London Ser B 357:863–869

    Article  CAS  Google Scholar 

  • Laybourn-Parry J, Bayliss P (1996) Seasonal dynamics of the planktonic community in Lake Druzhby, Princess Elisabeth Land, Eastern Antarctica. Freshwater Biol 35:57–67

    Article  Google Scholar 

  • Laybourn-Parry J, Bayliss P, Ellis-Evans JC (1995) The dynamics of heterotrophic nanoflagellates and bacterioplankton in a large ultra-oligotrophic Antarctic lake. J Plankton Res 17:1834–1850

    Article  Google Scholar 

  • Laybourn-Parry J, Ellis-Evans JC, Butler H (1996) Microbial dynamics during the summer ice-loss phase in maritime Antarctic lakes. J Plankton Res 18:495–511

    Article  Google Scholar 

  • Laybourn-Parry J, Bell EM, Roberts EC (2000) Protozoan growth rates in Antarctic lakes. Polar Biol 23:445–451

    Article  Google Scholar 

  • Laybourn-Parry J, Quayle WC, Henshaw T, Ruddell A, Marchant HJ (2001) Life on the edge: the plankton and chemistry of Beaver lake, an ultra-oligotrophic epishelf lake, Antarctica. Freshwater Biol 46:1205–1217

    Article  Google Scholar 

  • Laybourn-Parry J, Quayle W, Henshaw T (2002) The biology and evolution of Antarctic saline lakes in relation to salinity and trophy. Polar Biol 25:542–552

    Article  Google Scholar 

  • Laybourn-Parry J, Henshaw T, Jones DJ, Quayle W (2004) Bacterioplankton production in freshwater Antarctic lakes. Freshwater Biol 49:735–744

    Article  CAS  Google Scholar 

  • Laybourn-Parry J, Marshall WA, Marchant HJ (2005) Flagellate nutritional versatility as a key to survival in two contrasting Antarctic saline lakes. Freshwater Biol 50:830–838

    Article  Google Scholar 

  • Lewis Smith RI (1984) Terrestrial plant biology of the sub-Antarctic and Antarctic. In: Law RM (eds) Antarctic Ecology, Vol. 1. Academic Press, London, pp 61–162

    Google Scholar 

  • Light JJ, Heywood RB (1973) Deep-water mosses in Antarctic lakes. Nature 242:535–536

    Article  Google Scholar 

  • Markager S, Vincent WF, Tang EPY (1999) Carbon fixation by phytoplankton in high Arctic lakes: implications of low temperature for photosynthesis. Limnol Oceanogr 44:597–607

    Article  CAS  Google Scholar 

  • Marshall W, Laybourn-Parry J (2002) The balance between photosynthesis and grazing in Antarctic mixotrophic cryptophytes during summer. Freshwater Biol 47:2060–2070

    Article  Google Scholar 

  • Mataloni G, Tesolin G, Tell G (1998) Characterization of a small eutrophic Antarctic lake (Otero Lake, Cierva Point) on the basis of algal assemblages and water chemistry. Polar Biol 19:107–114

    Article  Google Scholar 

  • Mataloni G, Tesolin G, Sacullo F, Tell G (2000) Factors regulating summer phytoplankton in a highly eutrophic Antarctic lake. Hydrobiologia 432:65–72

    Article  Google Scholar 

  • Matson PA, Hunter MD (1992) The relative contributions of top-down and bottom-up forces in population and community ecology. Ecology 73:723–723

    Article  Google Scholar 

  • Menu-Marque S, Morone JJ, de Mitrovich CL (2000) Distributional patterns of the South American species of Boeckella (Copepoda: Centropagidae): A track analysis. J Crustacean Biol 20:262–272

    Article  Google Scholar 

  • Mitra A, Flynn KJ (2005) Predator-prey interactions: is “ecological stoichiometry” sufficient when good food goes bad? J Plankton Res 27:393–399

    Article  Google Scholar 

  • Moorhead DL, Wolf CF, Wharton RA (1997) Impact of light regimes on productivity patterns of benthic microbial mats in an Antarctic lake: A modelling study. Limnol Oceanogr 42:1561–1569

    Article  PubMed  CAS  Google Scholar 

  • Nadeau TL, Castenholz RW (2000) Characterization of psychrophilic oscillatorians (Cyanobacteria) from Antarctic meltwater ponds. J Phycol 36: 914–923

    Article  Google Scholar 

  • Ohman MD, Runge JA (1994) Sustained fecundity when phytoplankton resources are in short supply: omnivory by Calanus finmarchicus in the Gulf of St. Lawrence. Limnol Oceanogr 39:21–36

    Article  CAS  Google Scholar 

  • Pace ML (1988) Bacterial mortality and the fate of bacterial production. Hydrobiologia 159:41–49

    Google Scholar 

  • Pace ML, Funke E (1991) Regulation of planktonic microbial communities by nutrients and herbivores. Ecology 72:904–914

    Article  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR (1998) Trophic cascades and compensation: Differential responses of microzooplankton in whole-lake experiments. Ecology 79: 138–152

    Article  Google Scholar 

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 15:483–488

    Article  Google Scholar 

  • Paggi JC de (1987) Limnological studies in the Potter Peninsula, 25 de Mayo Island, South Shetland Islands: biomass and spatial distribution of zooplankton. BIOMASS Sci Ser 7:175–191

    Google Scholar 

  • Paggi JC de (1996) Feeding ecology of Branchinecta gainii (Crustacea: Anostraca) in ponds of South Shetland Islands, Antarctica. Polar Biol 16:13–18

    Google Scholar 

  • Paine RT (1980) Food webs, linkage, interaction, strength and community infrastructure. J Animal Ecol 49:667–685

    Article  Google Scholar 

  • Pearce DA (2000) A method to study bacterioplankton community structure in Antarctic lakes. Polar Biol 23:352–356

    Article  Google Scholar 

  • Pearce DA (2003) Bacterioplankton community structure in a maritime Antarctic oligotrophic lake during a period of holomixis, as determined by denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH). Microbial Ecol 46:92–105

    Article  CAS  Google Scholar 

  • Pearce DA (2005) The structure and stability of the bacterioplankton community in Antarctic freshwater lakes, subject to extremely rapid environmental change. FEMS Microbiol Ecol 53:61–72

    Article  PubMed  CAS  Google Scholar 

  • Pearce D, van der Gast CJ, Lawley B, Ellis-Evans JC (2003) Bacterioplankton community diversity in a maritime Antarctic lake, determined by culture-dependent and culture-independent techniques. FEMS Microbiol Ecol 45:59–70

    Article  CAS  PubMed  Google Scholar 

  • Peck LS, Clark MS, Clarke A, Cockell CS, Convey P, Detrich HW, Fraser KPP, Johnston IA, Methe BA, Murray AE, Romisch K, Rogers AD (2005) Genomics: applications to Antarctic ecosystems. Polar Biol 28:351–365

    Article  Google Scholar 

  • Pernthaler J, Amann R (2005) Fate of heterotrophic protists in pelagic habitats: Focus in populations. Microbiol Molec Biol Rev 69:440–461

    Article  CAS  Google Scholar 

  • Pernthaler J, Sattler B, Simek K, Schwarzenbacher A, Psenner R (1996) Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquat Microb Ecol 10:255–263

    Google Scholar 

  • Persson L (1999) Trophic cascades: abiding heterogeneity and the trophic level concept at the end of the road. Oikos 85:385-397

    Article  Google Scholar 

  • Petz W (2003) Ciliate biodiversity in Antarctic and Arctic freshwater habitats – a bipolar comparison. Eur J Protistol 39:491–494

    Article  Google Scholar 

  • Petz W, Valbonesi A, Quesada A (2005) Ciliate biodiversity in freshwater habitats of the maritime and continental Antarctica. Terra Antarctica 11:43–50

    Google Scholar 

  • Pizarro H, Allende L, Bonaventura SM (2004) Littoral epilithon of lentic water bodies at Hope Bay, Antarctic Peninsula: biomass variables in relation to environmental conditions. Hydrobiologia 529:237–250

    Article  CAS  Google Scholar 

  • Polis GA, Sears ALW, Huxel GR, Strong DR, Maron J (2000) When a trophic cascade is a trophic cascade? Trends Ecol Evol 15:473–475

    Article  PubMed  Google Scholar 

  • Pomeroy LR (1974) The ocean’s food web, a changing paradigm. Bioscience. 24:499–504

    Article  Google Scholar 

  • Priddle I, Hawes I, Ellis-Evans JC (1986) Antarctic aquatic systems as habitats for phytoplankton. Biological Rev 61:199–238

    Google Scholar 

  • Ptacnik R, Sommer U, Hansen T, Martens V (2004) Effects of microzooplankton and mixotrophy in an experimental planktonic food web. Limnol Oceanogr 49:1435–1445

    Article  Google Scholar 

  • Pugh PJA, Dartnall HJG, McInnes SJ (2002) The non-marine Crustacea of Antarctica and the islands of the Southern Ocean: Biodiversity and biogeography. J Nat History 36:1047–1103

    Article  Google Scholar 

  • Quayle WC, Peck LS, Peat H, Ellis-Evans JC, Harrigan PR (2002) Extreme responses to climate change in Antarctic lakes. Science 295:645

    Article  PubMed  CAS  Google Scholar 

  • Quesada A, Vincent WF (1997) Strategies of adaptation by Antarctic cyanobacteria to ultraviolet radiation. Eur J Phycol 32:335–342

    Article  Google Scholar 

  • Roberts EC, Laybourn-Parry J (1999) Mixotrophic cryptophytes and their predators in the Dry Valley lakes of Antarctica. Freshwater Biol 41:737–746

    Article  Google Scholar 

  • Roberts EC, Laybourn-Parry J, McKnight DM, Novarino G (2000) Stratification and dynamics of microbial loop communities in Lake Fryxell. Freshwater Biol 44:649–661

    Article  Google Scholar 

  • Roberts EC, Priscu JC, Wolf C, Lyons WB, Laybourn-Parry J (2004) The distribution of microplankton in the McMurdo Dry Valley lakes, Antarctica: response to ecosystem legacy or present-day climatic controls? Polar Biol 27:238–249

    Article  Google Scholar 

  • Sancho LG, Pintado A (2004) Evidence of high annual growth rate for lichens in the maritime Antarctic. Polar Biol 27:312–319

    Article  Google Scholar 

  • Schindler DW (1998) Replication versus realism: The need for ecosystem-scale experiments. Ecosystems 1:323–334

    Article  Google Scholar 

  • Shurin JB, Borer ET, Seabloom EW, Anderson K, Blanchette CA, Broitman B (2002) A cross-ecosystem comparison of the strength of trophic cascades. Ecol Lett 5:785–791

    Article  Google Scholar 

  • Simmons GM, Vestal JR, Wharton RA (1993) Environmental regulators of microbial activity in continental Antarctic lakes. In: Friedmann EI (eds) Antarctic microbiology. Wiley-Liss, New York, pp. 491–541

    Google Scholar 

  • Smith JA, Hodgson DA, Bentley MJ, Verleyen E, Leng MJ, Roberts SJ (2006) Limnology of two Antarctic epishelf lakes and their potential to record periods of ice shelf loss. J Paleolimnol 35:373–394

    Article  Google Scholar 

  • Sommer U, Sommer F (2006) Cladocerans versus copepods: the cause of contrasting top–down controls on freshwater and marine phytoplankton. Oecologia 147:183–194

    Article  PubMed  Google Scholar 

  • Sommer U, Stibor H (2002) Copepoda-Cladocera-Tunicata: the role of three major mesozooplankton groups in pelagic food webs. Ecol Res 17:161–174

    Article  Google Scholar 

  • Sommer U, Stibor H, Katechakis A, Sommer F, Hansen T (2002) Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio of fish production:primary production. Hydrobiologia 484:11–20

    Article  Google Scholar 

  • Steiner CF (2003) Keystone predator effects and grazer control of planktonic primary production. Oikos 101:569–577

    Article  Google Scholar 

  • Sterner R (1986) Hervivores’ direct and indirect effects on algal populations. Science 231:605–607

    Article  PubMed  CAS  Google Scholar 

  • Stoecker DK, Capuzzo SM (1990) Predation on protozoa: its importance to zooplankton. J Plankton Res 12:891–908

    Article  Google Scholar 

  • Strong DR (1992) Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology. 73:747–754

    Article  Google Scholar 

  • Sun S, Hansen JE (2003) Climate simulations for 1951–2050 with a coupled atmosphere-ocean model. J Cimate 16:2807–2826

    Article  Google Scholar 

  • Swadling KM, Gibson JAE (2000) Grazing rates of a calanoid copepod (Paralabidocera antarctica) in a continental Antarctic lake. Polar Biol 23:301–308

    Article  Google Scholar 

  • Takacs CD, Priscu JC (1998) Bacterioplankton dynamics in the McMurdo Dry Valley lakes, Antarctica: Production and biomass loss over four seasons. Microbial Ecol 36:239–250

    Article  Google Scholar 

  • Tang EPY, Tremblay R, Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems: Are high-latitude mat-formers adapted to low temperature? J Phycol 33:171–181

    Article  Google Scholar 

  • Taton A, Grubisic S, Brambilla E, de Wit R, Wilmotte A (2003) Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl Environ Microbiol 69:5157–5169

    Article  PubMed  CAS  Google Scholar 

  • Tranvik LJ, Hansson LA (1997) Predator regulation of aquatic microbial abundance in simple food webs of sub-Antarctic lakes. Oikos 79:347–356

    Article  Google Scholar 

  • Unrein F, Vinocur A (1999) Phytoplankton structure and dynamics in a turbid Antarctic lake (Potter Peninsula, King George Island). Polar Biol 22:93–101

    Article  Google Scholar 

  • Unrein F, Izaguirre I, Massana R, Balague V, Gasol JM (2005) Nanoplankton assemblages in maritime Antarctic lakes: characterisation and molecular fingerprinting comparison. Aquat Microb Ecol 40:269–282

    Google Scholar 

  • Van de Vijver B, Beyens L (1999) Biogeography and ecology of freshwater diatoms in sub-Antarctica: a review. J Biogeogr 26:993–1000

    Article  Google Scholar 

  • Vanni MJ (2002) Nutrient cycling by animals in freshwater ecosystems. Annu Rev Ecol Syst 33:341–370

    Article  Google Scholar 

  • Vincent WF (1988) Microbial ecosystems in Antarctica. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Vincent WF, Laurion I, Pienitz R (1998) Arctic and Antarctic lakes as optical indicators of global change. Ann Glaciol 27:691–696

    CAS  Google Scholar 

  • Vincent WF, Downes MT, Castenholz RW, Howard-Williams C (1993) Community structure and pigment organization of cyanobacteria-dominated microbial mats in Antarctica. Eur J Phycol 28:213–221

    Article  Google Scholar 

  • Vinocur A, Unrein F (2000) Typology of lentic water bodies at Potter Peninsula (King George Island, Antarctica) based on physical-chemical characteristics and phytoplankton communities. Polar Biol 23:858–870

    Article  Google Scholar 

  • Vinocur A, Pizarro H (2000) Microbial mats of twenty-six lakes from Potter Peninsula, King George Island, Antarctica. Hydrobiologia 437:171–185

    Article  Google Scholar 

  • Wetzel RG (2001) Limnology. Academic Press, San Diego, CA

    Google Scholar 

  • Wynn-Williams DD (1996) Antarctic microbial diversity: The basis of polar ecosystem processes. Biodiv Conserv 5:1271–1293

    Article  Google Scholar 

  • Zöllner E, Santer B, Boersma M, Hoppe HG, Jürgens K (2003) Cascading predation effects of Daphnia and copepods on microbial food web components. Freshwater Biol 48:2174–2193

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Camacho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Camacho, A. (2006). Planktonic microbial assemblages and the potential effects of metazooplankton predation on the food web of lakes from the maritime Antarctica and sub-Antarctic islands. In: Amils, R., Ellis-Evans, C., Hinghofer-Szalkay, H. (eds) Life in Extreme Environments. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6285-8_9

Download citation

Publish with us

Policies and ethics