Skip to main content

Population Management and Restoration

  • Chapter
Conservation Biology

In this chapter, you will learn:

  1. 1.

    How to estimate a population’s probability of persistence and initiate investigations to determine that probability in specific populations

  2. 2.

    How to develop a plan for the conservation of a small and declining population and experimentally identify the factors most important to its recovery

  3. 3.

    What are the social, political, and legal conditions that support population restoration

  4. 4.

    Why non-native species pose a threat to native populations and how such threats can be controlled

In Chapter 8 we saw how models offering a Population Viability Analysis (PVA) could be constructed, what kinds of analyses they might be able to perform, and how they might be applied to real populations. In this chapter, we continue our investigation of population conservation by examining specific case histories of conservation management in small populations, as well as examining the management of populations of non-native species, populations that we often want to remain small, or even eradicate altogether.

We have noted earlier that genetic considerations were the original source of estimates of minimum viable populations in conservation biology, beginning with Franklin’s (1980) suggestion that effective population sizes of 50 were needed to prevent deleterious effects of inbreeding, and a minimum effective size of 500 was required to maintain sufficient genetic variation to be able to respond to continuing environmental variation. We also have noted that such “rules” were too general to be of value to specific populations. In many cases, much larger numbers may be required. Of greater importance is the fact that such an estimate of MVP reflects only genetic considerations. Modern population viability analysis considers demographic, environmental, and genetic characteristics of a population, and shifts its emphasis from focusing on the minimum size needed for a viable population (MVP) to more complex and comprehensive estimates of the probability of the population’s persistence through time under different environmental, demographic, and genetic scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alverson, W. S., D. M. Waller, and S. L. Solheim. 1995. Forests too deer: edge effects in northern Wisconsin. In: D. Ehrenfeld (ed) Readings from conservation biology: the landscape perspective. Blackwell Science, Cambridge, MA, pp 119–129

    Google Scholar 

  • Andow, D. A., P. M. Kareiva, S. A. Levin, and A. Okubo. 1990. Spread of invading organisms. Landscape Ecology 4:177–188

    Article  Google Scholar 

  • Ashton, P. S., and D. S. Mitchell. 1989. Aquatic plants: patterns and mode of invasion, attributes of invading species and assessment of control programs. In: J. A. Drake, H. A. Mooney, F. diCastri, R. H. Groves, F. J. Kruger, M. Rejmánek, and M. Williamson (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 111–154

    Google Scholar 

  • Bossenbroek, J. M., L. E. Johnson, B. Peters, and D. M. Lodge. 2007. Forecasting the expansion of zebra mussels in the United States. Conservation Biology 21:800–810

    Article  PubMed  Google Scholar 

  • Brönmark, C., and L. A. Hansson. 1998. The biology of lakes and ponds. Oxford University Press, Oxford

    Google Scholar 

  • Carey, J. R. 1996. The incipient Mediterranean fruit fly population in California: implications for invasion biology. Ecology 77:1690–1697

    Article  Google Scholar 

  • Carlsen, T. M., J. W. Menke, and B. M. Pavlik. 2000. Reducing competitive suppression of a rare annual forb by restoring native California perennial grasslands. Restoration Ecology 8:18–29

    Article  Google Scholar 

  • Carlton, J. T., and J. B. Geller. 1993. Ecological roulette: the global transport and invasion of non-indigenous marine organisms. Science 261:78–82

    Article  Google Scholar 

  • Caughley, G., and A. Gunn. 1996. Conservation biology in theory and practice. Blackwell Science, Oxford

    Google Scholar 

  • Chaplin, S. J., R. A. Gerrard, H. M. Watson, L. L. Master, and S. R. Flack. 2000. The geography of imperilment: targeting conservation toward critical biodiversity areas. In: B. A. Stein, L. S. Kutner, and J. S. Adams (eds) Precious heritage: the status of biodiversity in the United States. Oxford University Press, Oxford, pp 159–199

    Google Scholar 

  • COEX: sharing the land with wildlife. 2007. About COEX. Available from http://www.coex-wildlife.org/about.htm (accessed July 2007)

  • Colling, G., and D. Matthies. 2006. Effects of habitat deterioration on population dynamics and extinction risk of an endangered, long-lived perennial herb (Scorzonera humilis). Journal of Ecology 94:959–972

    Article  Google Scholar 

  • Crawley, M. J. 1987. What makes a community invasible? In: A. J. Gray, M. J. Crawley, and P. J. Edwards (eds) Colonization, succession, and stability. Blackwell Scientific, Oxford, pp 429–453

    Google Scholar 

  • Crivelli, A. J. 1983. The destruction of aquatic vegetation by carp. Hydrobiologia 106:37–41

    Article  Google Scholar 

  • Elton, C. S. 1958. The ecology of invasions by animals and plants. Methuen, London

    Google Scholar 

  • Fofonoff, P. W., G. M. Ruiz, B. Steves, and J. T. Carlton. 2003. In ships or on ships? Mechanisms of transfer and invasion for nonnative species to the coasts of North America. In: Ruiz, G. M., and J. T. Carlton (eds) Invasive species: vectors and management strategies. Island Press, Washington, DC, pp 152–182

    Google Scholar 

  • Forcella, F., J. T. Wood, and S. P. Dillon. 1986. Characteristics distinguishing invasive weeds within Echium (Bugloss). Weed Research 26:351–364

    Article  Google Scholar 

  • Franklin, I. R. 1980. Evolutionary change in small populations. In: M. E. Soulé and B. A. Wilcox (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer, Sunderland, MA, pp 135–149

    Google Scholar 

  • Fullagar, P. J. 1985. The woodhens of Lord Howe Island. Aviculture Magazine 91:15–30

    Google Scholar 

  • Fuller, T. K., W. E. Berg, G. L. Radde, M. S. Lenarz, and G. B. Joselyn. 1992. A history and current estimate of wolf distribution and numbers in Minnesota. Wildlife Society Bulletin 20:42–55

    Google Scholar 

  • Gil-Sánchez, J. M., and J. Alba-Tercedor. 2006. The decline of the endangered populations of the native freshwater crayfish (Austropotamobius pallipes) in southern Spain: it is possible to avoid extinction? Hydrobiologia 559:113–122

    Article  Google Scholar 

  • Godfray, H. C. J., and M. J. Crawley. 1998. Introductions. In: W. J. Sutherland (ed) Conservation science and action. Blackwell Science, Oxford, pp 39–65

    Google Scholar 

  • Grosholz, E. D. 1996. Contrasting rates of spread for introduced species in terrestrial and marine systems. Ecology 77:1680–1686

    Article  Google Scholar 

  • Haight, R. G., D. J. Mladenoff, and A. P. Wydeven. 1998. Modeling disjunct gray wolf populations in semi-wild landscapes. Conservation Biology 12:879–888

    Article  Google Scholar 

  • Harper, J. L. 1977. The population biology of plants. Academic, London

    Google Scholar 

  • Hayes, T. 1998. Conservation of native freshwater mussels: an overview. Endangered Species Update 15(6):108–110

    Google Scholar 

  • James, F. C., C. A. Hess, B. C. Kicklighter, and R. A. Thum. 2001. Ecosystem management and the niche gestalt of the Red-cockaded Woodpecker in longleaf pine forests. Ecological Applications 11:854–870

    Article  Google Scholar 

  • Johnson, L. E., and J. T. Carlton. 1996. Post-establishment spread in large-scale invasions: dispersal mechanisms of the zebra mussel Dreissena polymorpha. Ecology 77:1686–1690

    Article  Google Scholar 

  • Johnson, P. D., and R. S. Butler. 1999. Conserving a treasure of diversity. Endangered Species Bulletin 24(4):16–17

    Google Scholar 

  • Leung, B., D. M. Lodge, D. Finnoff, J. F. Shogren, M. A, Lewis, and G. Lamberti. 2002. An ounce of prevention is worth a pound of cure: bioeconomic risk analysis of invasive species. Proceedings of the Royal Society of London Series B: Biological Sciences 269:2407–2413

    Article  PubMed  Google Scholar 

  • Lodge, D. M. 1993. Biological invasions: lessons for ecology. Trends in Ecology and Evolution 8:133–137

    Article  Google Scholar 

  • Lodge, D. M. et al. 2006. Biological invasions: recommendations for US policy and management. Ecological Applications 16:2035–2054

    Article  PubMed  Google Scholar 

  • Louda, S. M., and C. W. O’Brien. 2002. Unexpected ecological effects of distributing the exotic weevil, Larinus planus (F.), for the biological control of Canada thistle. Conservation Biology 16:717–727

    Article  Google Scholar 

  • Mack, R. N., D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout, and F. A. Bazzaz. 2000. Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10:689–710

    Article  Google Scholar 

  • Maschinski, J., J. E. Baggs, P. F. Quintana-Ascensio, and E. S. Menges. 2006. Using population viability analysis to predict the effects of climate change on the extinction risk of an endangered limestone endemic shrub, Arizona cliffrose. Conservation Biology 20:218–228

    Article  PubMed  Google Scholar 

  • McKinney, M. L. 2002. Do human activities raise species richness? Contrasting patterns in United States plants and fishes. Global Ecology and Biogeography 11:343–348

    Article  Google Scholar 

  • Mech, L. D. 1995. The challenge and opportunity of recovering wolf populations. Conservation Biology 9:270–278

    Article  Google Scholar 

  • Mladenoff, D. J., and F. Stearns. 1993. Eastern hemlock regeneration and deer browsing in the Northern Great Lakes Region: a re-examination and model simulation. Conservation Biology 7:889–900

    Article  Google Scholar 

  • Mladenoff, D. J., R. G. Haight, T. A. Sickley, and A. P. Wydeven. 1997. Causes and implications of species restoration in altered ecosystems. BioScience 47:21–31

    Article  Google Scholar 

  • Miller, B., and K. J. Mullette. 1985. Rehabilitation of an endangered Australian bird: the Lord Howe Island woodhen Tricholimnas sylvestris (Sclater). Biological Conservation 34:55–95

    Article  Google Scholar 

  • Mlot, C. 1992. Botanists sue Forest Service to preserve biodiversity. Science 257:1618–1619

    Article  PubMed  Google Scholar 

  • Mooney, H. A., R. N. Mack, J. A. McNeely, L. E. Neville, P. J. Schei, and J. K. Waage (eds). 2005. Invasive alien species: a new synthesis. Island Press, Washington, DC

    Google Scholar 

  • Morales, M. B., V. Bretagnolle, and B. Arroyo. 2005. Viability of the endangered Little bustard Tetrax tetrax population of western France. Biodiversity and Conservation 14:3135–3150

    Article  Google Scholar 

  • Moyle, P. H., and T. Light. 1996. Fish invasions in California: do abiotic factors determine success? Ecology 77:1666–1670

    Article  Google Scholar 

  • New South Wales National Parks and Wildlife Service. 2004. Lord Howe Island woodhen. Available from http://www.nationalparks.nsw.gov.au/npws.nsf/Content/The + Lord + Howe + Island + woodhen (accessed July 2007)

  • Niemelä, P., and W. J. Mattson. 1996. Invasion of North American forests by European phytophagous insects. BioScience 46: 741–753

    Article  Google Scholar 

  • Pavlik, B. M. 1994. Demographic monitoring and the recovery of endangered plants. In: M. L. Bowles and C. J. Whelan (eds) Restoration of endangered species: conceptual issues, planning, and implementation. Cambridge University Press, Cambridge, pp 322–353

    Google Scholar 

  • Pavlik, B. M., D. L. Nickrent, and A. M. Howard. 1993. The recovery of an endangered plant. I. Creating a new population of Amsinckia grandiflora. Conservation Biology 7:510–526

    Article  Google Scholar 

  • Peters, D. P. C. 2004. Selection models of invasive species dynamics. Weed Technology 18:1236–1239

    Article  Google Scholar 

  • Pimentel, D. (ed). 2002. Biological invasions: economic and environmental costs of alien plant, animal, and microbe species. CRC, Boca Raton, FL

    Google Scholar 

  • Pimentel, D., R. Zuniga, and D. Morrison. 2005. Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52:273–288

    Article  Google Scholar 

  • Rejmánek, M. 1995. What makes a species invasive? In: P. Pysek, K. Prach, Rejmánek, M. and P. M. Wade (eds) Plant invasions. SPB Academic Publishing, The Hague, The Netherlands, pp 3–13

    Google Scholar 

  • Rejmánek, M., and D. M. Richardson. 1996. What attributes make some plant species more invasive? Ecology 77:1655–1661

    Article  Google Scholar 

  • Robel, R. J. 1961. The effect of carp populations on the production of waterfowl food plants on a western waterfowl marsh. Transactions of the North American Wildlife and Natural Resources Conference 26:147–159

    Google Scholar 

  • Rosenzweig, M. L. 1991. Habitat selection and population interactions: the search for mechanism. American Naturalist 137:S5–S28

    Article  Google Scholar 

  • Ruiz, G. M., J. T. Carlton, E. D. Grosholz, and A. H. Hines. 1997. Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences. American Zoologist 37:621–632

    Google Scholar 

  • Sax, D. F., J. J. Stachowicz, and S. D. Gaines (eds). 2005. Species invasions: insights into ecology, evolution, and biogeography. Sinauer, Sunderland, MA

    Google Scholar 

  • Sclater, P. J. 1869. Ocydromus sylvestris, sp. nov. Proceedings of the Zoological Society, London 472–473

    Google Scholar 

  • Seehausen, O., F. Witte, E. F. Katunzi, J. Smits, and N. Bouton. 1997. Patterns of remnant cichlid fauna in southern Lake Victoria. Conservation Biology 11:890–904

    Article  Google Scholar 

  • Shaffer, M. L. 1981. Minimum population sizes for species conservation. BioScience 31:131–134

    Article  Google Scholar 

  • Sharov, A. A., and A. M. Liebhold. 1998. Model of slowing the spread of gypsy moth (Lepidoptera: Lymantriidae) with a barrier zone. Ecological Applications 8:1170–1179

    Article  Google Scholar 

  • Sheldon, S. P., and R. P. Creed, Jr. 1995. Use of a native insect as a biological control for an introduced weed. Ecological Applications 5:1122–1132

    Article  Google Scholar 

  • Shigesada, N., K. Kawasaki, and E. Teramoto. 1986. Traveling periodic waves in heterogeneous environments. Theoretical Population Biology 30:143–160

    Article  Google Scholar 

  • Sieg, C. H., and R. M. King. 1995. Influence of environmental factors and preliminary demographic analysis of a threatened orchid, Platanthera praeclara. American Midland Naturalist 134:61–77

    Article  Google Scholar 

  • Skellam, J. G. 1951. Random dispersal in theoretical populations. Biometrica 38:196–218

    CAS  Google Scholar 

  • Soule, M. E. 1983. What do we really know about extinctions? In: C. M. Schonewald-Cox, S. M. Chambers, B. MacBryde, and W. L. Thomas (eds) Genetics and conservation: a reference for managing wild animal and plant populations. Benjamin/Cummings, Menlo Park, CA, pp 111–124

    Google Scholar 

  • Treves, A., L. Naughton-Treves, E. K. Harper, D. J. Mladenoff, R. A. Rose, T. A. Sickley, and A. P. Wydeven. 2004. Predicting human-carnivore conflict: a spatial model derived from 25 years of data on wolf predation on livestock. Conservation Biology 18:114–125

    Article  Google Scholar 

  • Van Dyke, F. 2003. Conservation biology: foundations, concepts, applications. McGraw-Hill, New York

    Google Scholar 

  • Veit, R. R., and M. A. Lewis. 1996. Dispersal, population growth, and the Allee effect: dynamics of the house finch invasion of eastern North America. American Naturalist 148:255–274

    Article  Google Scholar 

  • Veltman, C. J., S. Nee, and M. J. Crawley. 1996. Correlates of introduction success in exotic New Zealand birds. American Naturalist 147:542–557

    Article  Google Scholar 

  • Ward, J. M, and A. Ricciardi. 2007. Impacts of Dreissena invasions on benthic macroinvertebrate communities: a meta-analysis. Diversity and Distributions 13:155–165

    Article  Google Scholar 

  • Whittaker, R. J. 1998. Island biogeography: ecology, evolution, and conservation. Oxford University Press, Oxford

    Google Scholar 

  • With, K. A. 1999. Is landscape connectivity necessary and sufficient for wildlife management? In: J. A. Rochelle, L. A. Lehmann, and J. Wisniewski (eds) Forest fragmentation: wildlife and management implications. Brill Academic Publishers, Leiden, The Netherlands, pp 97–115

    Google Scholar 

  • With, K. A. 2002. The landscape ecology of invasive spread. Conservation Biology 16:1192–1203

    Article  Google Scholar 

  • Witte, F., T. Goldschmidt, J. Wanink, M. van Oijen, K. Goudswaard, E. Witte-Maas, and N. Bouton. 1992. The destruction of an endemic species flock: quantitative data on the decline of the haplo-chromine cichlids of Lake Victoria. Environmental Biology of Fishes 34:1–28

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

(2008). Population Management and Restoration. In: Conservation Biology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6891-1_9

Download citation

Publish with us

Policies and ethics