Skip to main content

Breast and Colon Carcinomas: Detection with Plasma CRIPTO-1

  • Chapter
Methods of Cancer Diagnosis, Therapy and Prognosis

Human Cripto-1 (CR-1), also known as teratocarcinoma-derived growth factor-1 (TDGF-1) is a member of the Epidermal Growth Factor (EGF)-Cripto-1/FRL-1/Cryptic (CFC) protein family (Bianco et al., 2005a; Strizzi et al., 2005). Structurally the EGF-CFC family consists of extracellular soluble or cell membrane-associated proteins that contain an NH2-terminal signal peptide, a modified EGF-like region, a conserved cysteinerich domain (the CFC motif), and a short hydrophobic COOH-terminus which, with the exception of FRL-1, contains additional sequences for glycosylphosphatidylinositol (GPI) cleavage and attachment (Bianco et al., 2005a). Unlike the canonical EGF motif that contains three disulfide loops (A, B and C), the variant EGF-like motif in the EGF-CFC proteins lacks the A loop, possesses a truncated B loop and has a complete C loop. Because the EGF-CFC peptides lack the A loop, these proteins do not directly bind to any of the known HER-related tyrosine kinase receptors either as homodimers or heterodimers (Bianco et al., 1999, 2005a). The CFC domain of human CR-1 contains three disulfide bonds in a pattern which structurally resembles the von Willebrand factor C (VWFC)-like domains found within the COOH-terminal extracellular portions of the Notch ligands, Jagged1, and Jagged2 (Foley et al., 2003). Like several of the Notch receptor proteins, all of the EGF-CFC proteins contain a consensus O-linked fucosylation site within the EGF-like motif initially thought to be necessary for their ability to function as a coreceptor for the transforming growth factor β (TGFβ)-related protein, Nodal (Schiffer et al., 2001). However, a recent study demonstrates that it is the amino acid threonine to which fucose is bound and not fucose per se that is required for CR-1 coreceptor activity with Nodal (Shi et al., 2007). Biochemical characterization of human CR-1 identified Asn-79 as being an N-linked glycosylation site with > 90% occupancy, and Ser-40 and Ser-161 as being O-linked glycosylation sites with 80% and 40% occupancy, respectively (Bianco et al., 2005a). Whether mutation of these other glycosylation sites can affect the biological activity of CR-1 is presently unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 399.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins, H.B., Bianco, C., Schiffer, S.G., Rayhorn, P., Zafari, M., Cheung, A.E., Orozco, O., Olson, D., De Luca, A., Chen, L.L., Miatkowski, K., Benjamin, C., Normanno, N., Williams, K.P., Jarpe, M., LePage, D., Salomon, D., and Sanicola, M. 2003. Antibody blockade of the Cripto CFC domain suppresses tumor cell growth in vivo. J. Clin. Invest. 112: 575–587

    PubMed  CAS  Google Scholar 

  • Agrawal, S., and Zhao, Q. 1998. Mixed backbone oligonucleotides: improvement in oligonucleotide induced toxicity in vivo. Antisense Nucleic Acid Drug Dev. 8: 135–139

    PubMed  CAS  Google Scholar 

  • Baldassarre, G., Bianco, C., Tortora, G., Ruggiero, A., Moasser, M., Dmitrovsky, E., Bianco, A.R., and Ciardiello, F. 1996. Transfection with a CRIPTO anti-sense plasmid suppresses endog enous CRIPTO expression and inhibits trans formation in a human embryonal carcinoma cell line. Int. J. Cancer 66: 538–543

    Article  PubMed  CAS  Google Scholar 

  • Bianco, C., Kannan, S., De Santis, M., Seno, M., Tang, C.K., Martinez-Lacaci, I., Kim, N., Wallace-Jones, B., Lippman, M.E., Ebert, A.D., Wechselberger, C., and Salomon, D.S. 1999. Cripto-1 indirectly stimulates the tyrosine phos phorylation of erb B-4 through a novel receptor. J. Biol. Chem. 274: 8624–8629

    Article  PubMed  CAS  Google Scholar 

  • Bianco, C., Wechselberger, C., Ebert, A., Khan, N., Sun, Y. , and Salomon D.S. 2001. Identification of Cripto-1 in human milk. Breast Cancer Res. Treat. 66: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Bianco, C., Adkins, H.B., Wechselberger, C., Seno, M., Normanno, N., De Luca, A., Sun, Y., Khan, N., Kenney, N., Ebert, A., Williams, K.P., Sanicola, M., and Salomon, D.S. 2002. Cripto-1 activates nodal- and ALK4-dependent and -inde pendent signaling pathways in mammary epithe lial cells. Mol. Cell. Biol. 22: 2586–2597

    Article  PubMed  CAS  Google Scholar 

  • Bianco, C., Strizzi, L., Rehman, A., Normanno, N., Wechselberger, C., Sun, Y., Khan, N., Hirota, M., Adkins, H., Williams, K., Margolis, R.U., Sanicola, M., and Salomon D.S. 2003. A Nodal-and ALK4-independent signaling pathway acti vated by Cripto-1 through Glypican-1 and c-Src. Cancer Res. 63: 1192–1197

    PubMed  CAS  Google Scholar 

  • Bianco, C., Strizzi, L., Normanno, N., Khan, N., and Salomon D.S. 2005a. Cripto-1: an oncofetal gene with many faces. Curr. Top. Dev. Biol. 67: 85–133

    Article  CAS  Google Scholar 

  • Bianco, C., Strizzi, L., Ebert, A., Chang, C., Rehman, A., Normanno, N., Guedez, L., Salloum, R., Ginsburg, E., Sun, Y. , Khan, N., Hirota, M., Wallace-Jones, B., Wechselberger, C., Vonderhaar, B.K., Tosato, G., Stetler-Stevenson, W.G., Sanicola, M., and Salomon D.S. 2005b. Role of human cripto-1 in tumor angiogenesis. J. Natl. Cancer Inst. 97: 132–141

    Article  CAS  Google Scholar 

  • Bianco, C., Strizzi, L., Mancino, M., Rehman, A., Hamada, S., Watanabe, K., De Luca, A., Jones, B., Balogh, G., Russo, J., Mailo, D., Palaia, R., D'Aiuto, G., Botti, G., Perrone, F., Salomon, D.S., and Normanno, N. 2006. Identification of cripto-1 as a novel serologic marker for breast and colon cancer. Clin. Cancer Res. 12: 5158–5164

    Article  PubMed  CAS  Google Scholar 

  • Borgono, C.A., Grass, L., Soosaipillai, A., Yousef, G.M., Petraki, C.D., Howarth, D.H., Fracchioli, S., Katsaros, D., and Diamandis, E.P. 2003. Human kallikrein 14: a new potential biomarker for ovarian and breast cancer. Cancer Res. 63: 9032–9041

    PubMed  CAS  Google Scholar 

  • Boyer, B., Valles, A.M., and Edme, N. 2000. Induction and regulation of epithelial-mesen-chymal transitions. Biochem. Pharmacol. 60: 1091–1099

    Article  PubMed  CAS  Google Scholar 

  • Ciardiello, F., Kim, N., Saeki, T., Dono, R., Persico, M.G., Plowman, G.D., Garrigues, J., Radke, S., Todaro, G.J., and Salomon, D.S. 1991. Differential expression of epidermal growth fac tor-related proteins in human colorectal tumors. Proc. Natl. Acad. Sci. U S A. 88: 7792–7796

    Article  PubMed  CAS  Google Scholar 

  • Ciardiello, F., Tortora, G., Bianco, C., Selvam, M.P., Basolo, F., Fontanini, G., Pacifico, F., Normanno, N., Brandt, R., Persico, M.G., Salomon, D.S., and Bianco, A.R. 1994. Inhibition of CRIPTO expression and tumorigenicity in human colon cancer cells by antisense RNA and oligodeoxy-nucleotides. Oncogene 9: 291–298

    PubMed  CAS  Google Scholar 

  • De Angelis, E., Grassi, M., Gullick, W.J., Johnson, G.R., Rossi, G.B., Tempesta, A., De Angelis, F., De Luca, A., Salomon, D.S., and Normanno, N. 1999. Expression of cripto and amphiregulin in colon mucosa from high risk colon cancer fami lies. Int. J. Oncol. 14: 437–440

    PubMed  Google Scholar 

  • De Luca, A., Selvam, M.P., Sandomenico, C., Pepe, S., Bianco, A.R., Ciardiello, F., Salomon, D.S., and Normanno, N. 1997. Anti-sense oligo nucleotides directed against EGF-related growth factors enhance anti-proliferative effect of con ventional anti-tumor drugs in human colon-can cer cells. Int. J. Cancer 73: 277–282

    Article  PubMed  Google Scholar 

  • De Luca, A., Casamassimi, A., Selvam, M.P., Losito, S., Ciardiello, F., Agrawal, S., Salomon, D.S., and Normanno, N. 1999. EGF-related pep tides are involved in the proliferation and sur vival of MDA-MB-468 human breast carcinoma cells. Int. J. Cancer 80: 589–594

    Article  PubMed  Google Scholar 

  • De Luca, A., Arra, C., D'Antonio, A., Casamassimi, A., Losito, S., Ferraro, P., Ciardiello, F., Salomon, D.S., and Normanno, N. 2000. Simultaneous blockage of different EGF-like growth fac tors results in efficient growth inhibition of human colon carcinoma xenografts. Oncogene 19: 5863–5871

    Article  PubMed  CAS  Google Scholar 

  • Ebert, A.D., Wechselberger, C., Nees, M., Clair, T., Schaller, G., Martinez-Lacaci, I., Wallace-Jones, B., Bianco, C., Weitzel, H.K., and Salomon, D.S. 2000. Cripto-1-induced increase in vimentin expression is associated with enhanced migra tion of human Caski cervical carcinoma cells. Exp. Cell Res. 257: 223–229

    Article  PubMed  CAS  Google Scholar 

  • Foley, S.F., van Vlijmen, H.W., Boynton, R.E., Adkins, H.B., Cheung, A.E., Singh, J., Sanicola, M., Young, C.N., and Wen, D. 2003. The CRIPTO/FRL-1/CRYPTIC (CFC) domain of human Cripto. Functional and structural insights through disulfide structure analysis. Eur. J. Biochem. 270: 3610–3618

    Article  PubMed  CAS  Google Scholar 

  • Gagliardi, G., Talbot, I. C.,Northover, J.M.A., Warre, A., Stamp, G.W.H., Lalani, E.-N., Gullick, W.J., and Pignatelli, M. 1994. Cripto, a member of the epidermal growth factor family, is overex-pressed in human pancreatic cancer and chronic pancreatitis. Int. J. Cancer 56: 668–674

    Article  Google Scholar 

  • Gong, Y.P., Yarrow, P.M., Carmalt, H.L., Kwun, S.Y., Kennedy, C.W., Lin, B.P., Xing, P.X., and Gillett, D.J. 2007. Overexpression of Cripto and its prognostic significance in breast cancer: a study with long-term survival. Eur. J. Surg. Oncol. 33: 438–443

    Article  PubMed  CAS  Google Scholar 

  • Gray, P.C., Shani, G., Aung, K., Kelber, J., and Vale, W. 2006. Cripto binds transforming growth factor beta (TGF-beta) and inhibits TGF-beta signaling. Mol. Cell. Biol. 26: 9268–9278

    Article  PubMed  CAS  Google Scholar 

  • Herrington, E.E., Ram, T.G., Salomon, D.S., Johnson, G.R., Gullick, W.J., Kenney, N., and Hosick, H.L. 1997. Expression of epidermal growth factor-related proteins in the aged adult mouse mammary gland and their relationship to tumorigenesis. J. Cell. Physiol. 170: 47–56

    Article  PubMed  CAS  Google Scholar 

  • Minchiotti, G., Parisi, S., Liguori, G., Signore, M., Lania, G., Adamson, E.D., Lago, C.T., and Persico, M.G. 2000. Membrane-anchorage of Cripto protein by glycosylphosphatidylinositol and its distribution during early mouse develop ment. Mech. Dev. 90: 133–142

    Article  PubMed  CAS  Google Scholar 

  • Minchiotti, G., Manco, G., Parisi, S., Lago, C.T., Rosa, F., and Persico, M.G. 2001. Structure-function analysis of the EGF-CFC family mem ber Cripto identifies residues essential for nodal signalling. Development 128: 4501–4510

    PubMed  CAS  Google Scholar 

  • Morkel, M., Huelsken, J., Wakamiya, M., Ding, J., van de Wetering, M., Clevers, H., Taketo, M.M., Behringer, R.R., Shen, M.M., and Birchmeier, W. 2003. Beta-catenin regulates Cripto- and Wnt3-dependent gene expression programs in mouse axis and mesoderm formation. Development 130: 6283–6294

    Article  PubMed  CAS  Google Scholar 

  • Niemeyer, C.C., Spencer-Dene, B., Wu, J.X., and Adamson, E.D. 1999. Preneoplastic mammary tumor markers: Cripto and Amphiregulin are overexpressed in hyperplastic stages of tumor progression in transgenic mice. Int. J. Cancer 81: 588–591

    Article  PubMed  CAS  Google Scholar 

  • Normanno, N., Kim, N., Wen, D., Smith, K., Harris, A.L., Plowman, G., Colletta, G., Ciardiello, F., and Salomon, D.S. 1995. Expression of mes senger RNA for amphiregulin, heregulin, and cripto-1, three new members of the epidermal growth factor family, in human breast carcino mas. Breast Cancer Res. Treat. 35: 293–297

    Article  PubMed  CAS  Google Scholar 

  • Normanno, N., Bianco, C., Damiano, V., de Angelis, E., Selvam, M.P., Grassi, M., Magliulo, G., Tortora, G., Bianco, A.R., Mendelsohn, J., Salomon, D.S., and Ciardiello, F. 1996. Growth inhibition of human colon carcinoma cells by combinations of anti-epidermal growth factor-related growth factor antisense oligonucleotides. Clin. Cancer Res. 2: 601–609

    PubMed  CAS  Google Scholar 

  • Normanno, N., Tortora, G., De Luca, A., Pomatico, G., Casamassimi, A., Agrawal, S., Mendelsohn, J., Bianco, A.R., and Ciardiello, F. 1999. Synergistic growth inhibition and induction of apoptosis by a novel mixed backbone antisense oligonucleotide targeting CRIPTO in combina tion with C225 anti-EGFR monoclonal antibody and 8-Cl-cAMP in human GEO colon cancer cells. Oncol. Rep. 6: 1105–1109

    PubMed  CAS  Google Scholar 

  • Normanno, N., De Luca, A., Bianco, C., Maiello, M.R., Carriero, M.V., Rehman, A., Wechselberger, C., Arra, C., Strizzi, L., Sanicola, M., and Salomon, D.S. 2004a. Cripto-1 overexpression leads to enhanced invasive ness and resistance to anoikis in human MCF-7 breast cancer cells. J. Cell. Physiol. 198: 31–39

    Article  CAS  Google Scholar 

  • Normanno, N., De Luca, A., Maiello, M. R., Bianco, C., Mancino, M., Strizzi, L., Arra, C., Ciardiello, F., Agrawal, S., and Salomon D.S. 2004b. Cripto-1: a novel target for therapeutic intervention in human carcinoma. Int. J. Oncol. 25: 1013–1020

    CAS  Google Scholar 

  • Panico, L., D'Antonio, A., Salvatore, G., Mezza, E., Tortora, G., De Laurentiis, M., De Placido, S., Giordano, T., Merino, M., Salomon, D.S., Mullick, W.J., Pettinato, G., Schnitt, S.J., Bianco, A.R., and Ciardiello, F. 1996. Differential immunohistochem ical detection of transforming growth factor alpha, amphiregulin and CRIPTO in human normal and malignant breast tissues. Int. J. Cancer 65: 51–56

    Article  PubMed  CAS  Google Scholar 

  • Polakis, P. 2000. Wnt signaling and cancer. Genes Dev. 14: 1837–1851

    PubMed  CAS  Google Scholar 

  • Saeki, T., Stromberg, K., Qi, C.F., Gullick, W.J., Tahara, E., Normanno, N., Ciardiello, F., Kenney, N., Johnson, G.R., and Salomon, D.S. 1992. Differential immunohistochemical detection of amphiregulin and cripto in human normal colon and colorectal tumors. Cancer Res. 52: 3467–3473

    PubMed  CAS  Google Scholar 

  • Saeki, T., Salomon, D.S., Gullick, W.J., Mandai, K., Yamagami, K., Moriwaki, S., Takashima, S., Nishikawa, Y., and Tahara, E. 1994. Expression of cripto-1 in human colorectal adenomas and carcinomas is related to degree of dysplasia. Int. J. Oncol. 5: 445–452

    Google Scholar 

  • Saeki, T., Salomon, D.S., Johnson, G.R., Gullick, W.J., Mandai, K., Yamagami, K., Moriwaki, S., Tanada, M., Takashima, S., and Tahara, E. 1995. Association of epidermal growth factor-related peptides and type I receptor tyrosine kinase receptors with prognosis of human colorectal carcinomas. Jpn. J. Clin. Oncol. 25: 240–249

    PubMed  CAS  Google Scholar 

  • Schiffer, S.G., Foley, S., Kaffashan, A., Hronowski, X., Zichittella, A.E., Yeo, C.Y., Miatkowski, K., Adkins, H.B., Damon, B., Whitman, M., Salomon, D.S., Sanicola, M., and Williams, K.P. 2001. Fucosylation of Cripto is required for its ability to facilitate nodal signaling. J. Biol. Chem. 276: 37769–3778

    PubMed  CAS  Google Scholar 

  • Shi, S., Ge, C., Luo, Y. , Hou, X., Haltiwanger, R.S., and Stanley, P. 2007. The threonine that carries fucose, but not fucose, is required for cripto to facilitate nodal signaling. J. Biol. Chem. (in press)

    Google Scholar 

  • Srinivasan, R., Gillett, C.E., Barnes, D.M., and Gullick, W.J. 2000. Nuclear expression of the c erbB-4/HER-4 growth factor receptor in invasive breast cancers. Cancer Res. 60: 1483–1487

    PubMed  CAS  Google Scholar 

  • Steinert, P.M., and Roop, D.R. 1988. Molecular and cellular biology of intermediate filaments. Annu. Rev. Biochem. 57: 593–625

    Article  PubMed  CAS  Google Scholar 

  • Strizzi, L., Bianco, C., Normanno, N., Seno, M., Wechselberger, C., Wallace-Jones, B., Khan, N.I., Hirota, M., Sun, Y. , Sanicola, M., and Salomon, D.S. 2004. Epithelial mesenchymal transition is a characteristic of hyperplasias and tumors in mammary gland from MMTV-Cripto-1 transgenic mice. J. Cell. Physiol. 201: 266–276

    Article  PubMed  CAS  Google Scholar 

  • Strizzi, L., Bianco, C., Normanno, N., and Salomon, D. 2005. Cripto-1: a multifunctional modu lator during embryogenesis and oncogenesis. Oncogene 24: 5731–5741

    Article  PubMed  CAS  Google Scholar 

  • Sun, Y., Strizzi, L., Raafat, A., Hirota, M., Bianco, C., Feigenbaum, L., Kenney, N., Wechselberger, C., Callahan, R., and Salomon, D.S. 2005. Overexpression of human Cripto-1 in transgenic mice delays mammary gland development and differentiation and induces mammary tumori genesis. Am. J. Pathol. 167: 585–597

    PubMed  CAS  Google Scholar 

  • Wechselberger, C., Ebert, A.D., Bianco, C., Khan, N.I., Sun, Y. , Wallace-Jones, B., Montesano, R., and Salomon, D.S. 2001. Cripto-1 enhances migration and branching morphogenesis of mouse mammary epithelial cells. Exp. Cell Res. 266: 95–105

    Article  PubMed  CAS  Google Scholar 

  • Wechselberger, C., Strizzi, L., Kenney, N., Hirota, M., Sun, Y., Ebert, A., Orozco, O., Bianco, C., Khan, N.I., Wallace-Jones, B., Normanno, N., Adkins, H., Sanicola, M., and Salomon, D.S. 2005. Human Cripto-1 overexpression in the mouse mammary gland results in the devel opment of hyperplasia and adenocarcinoma. Oncogene 24: 4094–4105

    PubMed  CAS  Google Scholar 

  • Xing, P.X., Hu, X.F., Pietersz, G.A., Hosick, H.L., and McKenzie, I.F. 2004. Cripto: a novel tar get for antibody-based cancer immunotherapy. Cancer Res. 64: 4018–4023

    Article  PubMed  CAS  Google Scholar 

  • Zeisberg, M., and Kalluri, R. 2004. The role of epithelial-to-mesenchymal transition in renal fibrosis. J. Mol. Med. 82: 175–181

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Bianco, C., Strizzi, L., De Luca, A., Normanno, N., Salomon, D.S. (2008). Breast and Colon Carcinomas: Detection with Plasma CRIPTO-1. In: Hayat, M.A. (eds) Methods of Cancer Diagnosis, Therapy and Prognosis. Methods of Cancer Diagnosis, Therapy and Prognosis, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8369-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8369-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8368-6

  • Online ISBN: 978-1-4020-8369-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics