Skip to main content

Resorcinol–Formaldehyde Aerogels

  • Chapter
  • First Online:
Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Resorcinol–formaldehyde (RF) aerogels comprise an important class of organic aerogels, and they are studied intensely for their potential uses in thermal insulation, catalysis, and as precursors of electrically conducting carbon aerogels with applications in filtration, energy storage, and the green energy initiative. This broad overview focuses on how the chemical, microscopic, as well as macroscopic characteristics of RF and thereby carbon aerogels can be tailored to desired application-specific structure–property relationships by varying processing conditions such as the monomer concentration, the pH, and the catalyst-to-monomer ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fricke J (1988) Aerogels – highly tenuous solids with fascinating properties. J Non-Cryst Solids 100: 169–173.

    Article  CAS  Google Scholar 

  2. Fricke J (1992) Aerogels and their applications. J Non-Cryst Solids 147–148: 356–362.

    Article  Google Scholar 

  3. Hench L, West J (1990) The sol-gel process. Chem Rev 90: 33–72.

    Article  CAS  Google Scholar 

  4. Brinker C, Scherer G (1990) Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press Inc.

    Google Scholar 

  5. Carlson G, Lewis D, McKinley K, Richardson J, Tillotson T (1995) Aerogel commercialization: technology, markets and costs. J Non-Cryst Solids 186: 372–379.

    Article  CAS  Google Scholar 

  6. Pekala R (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24: 3221–3227.

    Article  CAS  Google Scholar 

  7. Pierre A, Pajonk G (2002) Chemistry of Aerogels and Their Applications. Chem Rev 102: 4243–4265.

    Article  CAS  Google Scholar 

  8. Al-Muhtaseb S, Ritter J (2003) Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv Mater 15: 101–114.

    Article  CAS  Google Scholar 

  9. Mulik S, Sotiriou-Leventis C, Leventis N (2007) Time-Efficient Acid-Catalyzed Synthesis of Resorcinol-Formaldehyde Aerogels. Chem Mater 19: 6138–6144.

    Article  CAS  Google Scholar 

  10. Barbieri O, Ehrburger-Dolle F, Rieker T, Pajonk G, Pinto N, Venkateswara Rao, A (2001) Small-angle X-ray scattering of a new series of organic aerogels. J Non-Cryst Solids 285: 109–115.

    Article  CAS  Google Scholar 

  11. Brandt R, Fricke J (2004) Acetic-acid-catalyzed and subcritically dried carbon aerogels with a nanometer-sized structure and a wide density range. J Non-Cryst Solids 350: 131–135.

    Article  CAS  Google Scholar 

  12. Pekala R, Schaefer D (1993) Structure of organic aerogels 1. Morphology and scaling. Macromoleculres 26: 5487–5493.

    CAS  Google Scholar 

  13. Gebert M, Pekala R (1994) Fluorescence and light-scattering studies of sol-gel reactions. Chem Mater 6: 220–226.

    Article  CAS  Google Scholar 

  14. Jirglova H, Perez-Cadenas A, Maldonado-Hodar F (2009) Synthesis and Properties of Phloroglucinol- Phenol – Formaldehyde Carbon Aerogels and Xerogels. Langmuir 25: 2461–2466.

    Article  CAS  Google Scholar 

  15. Wu D, Fu R, Sun Z, Yu Z (2005) Low-density organic and carbon aerogels from the sol-gel polymerization of phenol with formaldehyde. J Non-Cryst Solids 351: 915–921.

    Article  CAS  Google Scholar 

  16. Mendenhall R, Andrews G, Bruno J, Albert D (2000) Phenolic aerogels by high-temperature direct solvent extraction. U S Pat Ser No 221520.

    Google Scholar 

  17. Durairaj R (2005) Resorcinol: Chemistry, Technology and Applications. Springer, Germany 186–187.

    Google Scholar 

  18. Sprung M (1941) Reactivity of phenols toward paraformaldehyde. J Am Chem Soc 63: 334–343.

    Article  CAS  Google Scholar 

  19. Pizzi A, Mittal K (2003) Resorcinol Adhesive, Handbook of Adhesive Technology: Second Ed. Marcel Dekker, Inc. New York.

    Google Scholar 

  20. Mulik S, Sotiriou-Levetis C, Leventis N (2006) Acid-catalyzed time-efficient synthesis of resorcinol-formaldehyde aerogels and crosslinking with isocyanates. Polym Preprints 47: 364–365.

    CAS  Google Scholar 

  21. Yamamoto T, Nishimura T, Suzuki T, Tamon H (2001) Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying. J Non-Cryst Solids 288: 46–55.

    Article  CAS  Google Scholar 

  22. Tamon H, Ishizaka H, Mikami M, Okazaki M (1997) Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon 35: 791–796.

    Article  CAS  Google Scholar 

  23. Fung, A W P, Reynolds G A M, Wang Z, Dresselhaus M, Dresselhaus G, Pekala R (1995) Relationship between particle size and magnetoresistance in carbon aerogels prepared under different catalyst conditions. J Non-Cryst Solids 186: 200–208.

    Article  CAS  Google Scholar 

  24. (a) Horikawa T, Hayashi J, Muroyama K (2004) Controllability of pore characteristics of resorcinol-formaldehyde carbon aerogel. Carbon 42: 1625–1633. (b) Horikawa T, Hayashi J, Muroyama K (2004) Size control and characterization of spherical carbon aerogel particles from resorcinol-formaldehyde resin. Carbon 42: 169–175.

    Google Scholar 

  25. Pahl R, Bonse U, Pekala R, Kinney J (1991) SAXS investigations on organic aerogels. J Appl Crystallogr 24: 771–776.

    Article  CAS  Google Scholar 

  26. Saliger R, Bock V, Petricevic R, Tillotson T, Geis S, Fricke J (1997) Carbon aerogels from dilute catalysis of resorcinol with formaldehyde. J Non-Cryst Solids 221: 144–150.

    Article  CAS  Google Scholar 

  27. Fairen-Jimenez D, Carrasco-Marin F, Moreno-Castilla C (2008) Inter- and Intra-Primary-Particle Structure of Monolithic Carbon Aerogels Obtained with Varying Solvents. Langmuir 24:2820–2825.

    Article  CAS  Google Scholar 

  28. Mirzaeian M, Hall P (2009) The control of porosity at nano scale in resorcinol formaldehyde carbon aerogels. J Mater Sci 44: 2705–2713.

    Article  CAS  Google Scholar 

  29. Tamon H, Ishizaka H (1998) Porous characterization of carbon aerogels. Carbon 36:1397–1399.

    Article  CAS  Google Scholar 

  30. Job N, Pirard R, Marien J, Pirard J (2004) Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon 42: 619–628.

    Article  CAS  Google Scholar 

  31. Feng Y, Miao L, Tanemura M, Tanemura S, Suzuki K (2008) Effects of further adding of catalysts on nanostructures of carbon aerogels. Mater Sci Eng B: Solid-State Materials for Advanced Technology 148: 273–276.

    Article  CAS  Google Scholar 

  32. Lin C, Ritter J (1997) Effect of synthesis pH on the structure of carbon xerogels. Carbon 35: 1271–1278.

    Article  CAS  Google Scholar 

  33. Conceicao F, Carrott P J M, Ribeiro Carrott M. M. L (2009) New carbon materials with high porosity in the 1–7 nm range obtained by chemical activation with phosphoric acid of resorcinol-formaldehyde aerogels. Carbon 47: 1874–1877.

    Google Scholar 

  34. Merzbacher C, Meier S, Pierce J, Korwin M (2001) Carbon aerogels as broadband non-reflective materials. J Non-Cryst Solids 285: 210–215.

    Article  CAS  Google Scholar 

  35. Fairen-Jimenez D, Carrasco-Marin F, Moreno-Castilla C (2006) Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts. Carbon 44: 2301–2307.

    Article  CAS  Google Scholar 

  36. Berthon S, Barbieri O, Ehrburger-Dolle F, Geissler E, Achard P, Bley F, Hecht A.-M, Livet F, Pajonk G, Pinto N, Rigacci A, Rochas C (2001) DLS and SAXS investigations of organic gels and aerogels. J Non-Cryst Solids 285: 154–161.

    Article  CAS  Google Scholar 

  37. Brandt R, Petricevic R, Proebstle H, Fricke J (2003) Acetic acid catalyzed carbon aerogels. J Porous Mater 10: 171–178.

    Article  CAS  Google Scholar 

  38. Reuss M, Ratke L (2008) Subcritically dried RF-aerogels catalyzed by hydrochloric acid. J Sol-Gel Sci Technol 47: 74–80.

    Article  CAS  Google Scholar 

  39. Baumann T, Satcher J, Gash A (2002) Preparation of hydrophobic organic aerogels. US Pat Appl US 2002173554 A1 20021121.

    Google Scholar 

  40. March J (1992) Advanced Organic Chemistry, Reactions Mechanisms and Structure Fourth Edition, Wiley: New York 548–550.

    Google Scholar 

  41. (a) Moudrakovski I, Ratcliffe C, Ripmeester J, Wang L, Exarhos G, Baumann T, Satcher J (2005) Nuclear Magnetic Resonance Studies of Resorcinol-Formaldehyde Aerogels. J Phys Chem B 109: 11215–11222. (b) Werstler D (1986) Quantitative carbon-13 NMR characterization of aqueous formaldehyde resins: 2 Resorcinol-formaldehyde resins. Polymer 27: 757–64.

    Google Scholar 

  42. Berthon-Fabry S, Langohr D, Achard P, Charrier D, Djurado D, Ehrburger-Dolle F (2004) Anisotropic high–surface-area carbon aerogels. J Non-Cryst Solids 350: 136–144.

    Article  CAS  Google Scholar 

  43. Farmer J, Fix D, Mack G, Pekala R, Poco J (1996) Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes. J Appl Electrochem 26: 1007–1018.

    Article  CAS  Google Scholar 

  44. Petricevic R, Glora M, Fricke J (2001) Planar fiber reinforced carbon aerogels for application in PEM fuel cells. Carbon 39:857–867.

    Article  CAS  Google Scholar 

  45. (a) Gierszal K, Jaroniec M (2006) Carbons with Extremely Large Volume of Uniform Mesopores Synthesized by Carbonization of Phenolic Resin Film Formed on Colloidal Silica Template. J Am Chem Soc 128: 10026-10027. (b) Tao Y, Endo M, Kaneko K (2009) Hydrophilicity-Controlled Carbon Aerogels with High Mesoporosity. J Am Chem Soc 131: 904–905.

    Google Scholar 

  46. Marie J, Berthon-Fabry S, Achard P, Chatenet M, Pradourat A, Chainet E (2004) Highly dispersed platinum on carbon aerogels as supported catalysts for PEM fuel cell-electrodes: comparison of two different synthesis paths. J Non-Cryst Solids 350: 88–96.

    Article  CAS  Google Scholar 

  47. Pekala R (1995) Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures. US 5476878 A 19951219.

    Google Scholar 

  48. Wicks Z, Jones F, Pappas S (1994) Organic Coatings: Science and Technology, Vol. 1: Applications, Properties, and Performance. Wiley New York 84–87.

    Google Scholar 

  49. Raetzsch M, Bucka H, Ivanchev S, Pavlyuchenko V, Leitner P, Primachenko O (2004) The reaction mechanism of the transetherification and crosslinking of melamine resins. Macromol Symp 217: 431–443.

    Article  CAS  Google Scholar 

  50. Pekala R (1992) Melamine-formaldehyde copolymer aerogels US 5081163 A 19920114.

    Google Scholar 

  51. Nguyen M, Dao L (1998) Effects of processing variable on melamine formaldehyde aerogel formation. J Non-Cryst Solids 225: 51–57.

    Article  CAS  Google Scholar 

  52. Alviso C, Pekala R (1991) Melamine formaldehyde aerogels. Polym Preprints 32: 242–243.

    CAS  Google Scholar 

  53. Li W, Reichenauer G, Fricke J (2002) Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors. Carbon 40: 2955–2959.

    Article  CAS  Google Scholar 

  54. Perez-Caballero F, Peikolainen A.-L, Uibu M, Kuusik R, Volobujeva O, Koel M (2008) Preparation of carbon aerogels from 5-methylresorcinol-formaldehyde gels. Micropor Mesopor Mat 108: 230–236.

    Article  CAS  Google Scholar 

  55. Peikolainen A.-L, Perez-Caballero F, Koel M (2008) Low-density organic aerogels from oil shale by-product 5-methylresorcinol. Oil Shale 25: 348–358.

    Article  CAS  Google Scholar 

  56. Mulik S, Sotiriou-Leventis C, Leventis N (2008) Macroporous Electrically Conducting Carbon Networks by Pyrolysis of Isocyanate-Cross-Linked Resorcinol-Formaldehyde Aerogels. Chem Mater 20: 6985–6997.

    Article  CAS  Google Scholar 

  57. Tanaka S, Katayama Y, Tate M, Hillhouse H, Miyake Y (2007) Fabrication of continuous mesoporous carbon films with face-centered orthorhombic symmetry through a soft templating pathway. J Mater Chem 17: 3639-3645.

    Article  CAS  Google Scholar 

  58. Baumann T, Satcher J (2004) Template-directed synthesis of periodic macroporous organic and carbon aerogels. J Non-Cryst Solids 350: 120–125.

    Article  CAS  Google Scholar 

  59. Bekyarova E, Kaneko K (2000) Structure and physical properties of tailor-made Ce, Zr-doped carbon aerogels. Adv Mater 12: 1625–1628.

    Article  CAS  Google Scholar 

  60. Baumann T, Fox G, Satcher J, Yoshizawa N, Fu R, Dresselhaus M (2002) Synthesis and Characterization of Copper-Doped Carbon Aerogels. Langmuir 18: 7073–7076.

    Article  CAS  Google Scholar 

  61. Baumann T, Worsley M, Han T, Satcher J (2008) High surface area carbon aerogel monoliths with hierarchical porosity. J Non-Cryst Solids 354: 3513–3515.

    Article  CAS  Google Scholar 

  62. Baumann T, Satcher J (2003) Homogeneous Incorporation of Metal Nanoparticles into Ordered Macroporous Carbons. Chem Mater 15: 3745–3747.

    Article  CAS  Google Scholar 

  63. Maldonado-Hodar F, Perez-Cadenas A, Moreno-Castilla C (2003) Morphology of heat – treated tungsten doped monolithic carbon aerogels. Carbon 41: 1291–1299.

    Article  CAS  Google Scholar 

  64. Job N, Pirard R, Marien J, Pirard J (2004) Synthesis of transition metal-doped carbon xerogels by solubilization of metal salts in resorcinol-formaldehyde aqueous solution. Carbon 42: 3217–3227.

    Article  CAS  Google Scholar 

  65. Maldonado-Hodar F, Ferro-Garcia M, Rivera-Utrilla J, Moreno-Castilla C (1999) Synthesis and textural characteristics of organic aerogels, transition metal-containing organic aerogels, and their carbonized derivatives. Carbon 37: 1199–1205.

    Article  CAS  Google Scholar 

  66. Leventis N, Chandrasekaran N, Sotiriou-Leventis C, Mumtaz A (2009) Smelting in the age of nano: iron aerogels. J Mater Chem 19: 63–65.

    Article  CAS  Google Scholar 

  67. Moreno-Castilla C, Maldonado-Hodar F (2005) Carbon aerogels for catalysis applications: An overview. Carbon 43: 455–465.

    Article  CAS  Google Scholar 

  68. Job N, Pirard R, Vertruyen B, Colomer J, Marien J, Pirard J (2007) Synthesis of transition metal – doped carbon xerogels by cogelation. J Non-Cryst Solids 353: 2333–2345.

    Article  CAS  Google Scholar 

  69. Fu R, Baumann T, Cronin S, Dresselhaus G, Dresselhaus M, Satcher J (2005) Formation of graphitic structures in cobalt - and nickel – doped carbon aerogels. Langmuir 21: 2647–2651.

    Article  CAS  Google Scholar 

  70. Lu X, Arduini-Schuster M, Kuhn J, Nilsson O, Fricke J, Pekala R (1992) Thermal conductivity of monolithic organic aerogels. Science 255: 971–972.

    Article  CAS  Google Scholar 

  71. Yoldas B, Annen M, Bostaph J (2000) Chemical engineering of aerogel morphology formed under nonsupercritical conditions for thermal insulation. Chem Mater 12: 2475–2484.

    Article  CAS  Google Scholar 

  72. Alviso C, Pekala R, Gross J, Lu X, Caps R, Fricke J (1996) Resorcinol-formaldehyde and carbon aerogel microspheres. Mater Res Soc Sym Proc 521–525.

    Google Scholar 

  73. Hrubesh L, Pekala R (1994) Thermal properties of organic and inorganic aerogels. J Mater Res 9:731–738.

    Article  CAS  Google Scholar 

  74. Rettelbach T, Ebert H, Caps R, Fricke J, Alviso C, Pekala R (1996) Thermal conductivity of resorcinol-formaldehyde aerogels. Therm Cond 23: 407–418.

    CAS  Google Scholar 

  75. Homonoff E (2000) New filtration materials for the new millennium. Book of Papers – International Nonwovens Technical Conference, Dallas, TX, United States, Sept. 26–28, 2000, 8.1–8.6.

    Google Scholar 

  76. Sanchez-Polo M, Rivera-Utrilla J, Mendez-Diaz J, Lopez-Penalver J (2008) Metal – doped carbon aerogels new materials for water treatments. Ind Eng Chem Res 47: 6001–6005.

    Article  CAS  Google Scholar 

  77. (a) Paguio R, Takagi M, Thi M, Hund F, Nikroo A, Paguio S, Luo R, Greenwood L, Acenas O, Chowdhury S (2007) Improving the wall uniformity of resorcinol formaldehyde foam shells by modifying emulsion components. Fusion Sci Technol, 51: 682–687. (b) http://www.mkt-intl.com/aerogels/index.html (c) http://www.schafercorp.com/Company/sl/rf_aerogel.htm

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhir Mulik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mulik, S., Sotiriou-Leventis, C. (2011). Resorcinol–Formaldehyde Aerogels. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics