Skip to main content

ZrO2 Aerogels

  • Chapter
  • First Online:
Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Mesoporous zirconia aerogels are very interesting materials with important properties used for several applications such as ceramics and catalysis. The textural and structural properties of zirconia aerogel depend on the preparation parameters such as the hydrolysis ratio, the acid and zirconium precursor concentrations, and the gel aging. The extraction of the solvent under its supercritical conditions (high-temperature supercritical conditions) or under the supercritical conditions of CO2 (low-temperature supercritical condition) leads to aerogel zirconia with different properties. In fact, aerogel zirconia dried under high-temperature supercritical conditions is well crystallized and exhibits a large surface area. However, aerogels obtained with low-temperature supercritical conditions are amorphous and present a low surface area. Zirconia aerogels doped by metals, such as platinum, iron, and copper, or ions, in particular sulfate, phosphate, and tungstate anions, exhibit very important catalytic properties in many reactions such as n-alkane isomerization and Fischer–Tropsch synthesis. Doping zirconia with other oxides leads to materials with very interesting properties, allowing its use in fuel cells, thermal barrier coatings, oxygen sensors and many other high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morterra C, Cerrato G, DiCiero S, Signoretto M, Pinna F, Strukul G (1997) Platinum-promoted and unpromoted sulfated zirconia catalysts prepared by a one-step aerogel procedure: 1. Physico-chemical and morphological characterization. J Catal 165: 172–83

    CAS  Google Scholar 

  2. Signoretto M, Oliva L, Pinna F, Strukul G (2001) Synthesis of sulfated-zirconia aerogel: Effect of the chemical modification of precursor on catalyst porosity. J Non-Cryst Solids 290: 145–152

    Article  CAS  Google Scholar 

  3. Noma T, Yoshimura M, Somiya S, Kato M, Shibataand M, Seto H (1988) Advances in ceramics, Vol. 24. Science and technology of zirconia III. American Ceramic Society, Westerville

    Google Scholar 

  4. Kong Y M, Bae C J, Lee S H, Kim H W, Kim H E (2005) Improvement in biocompatibility of ZrO2-Al2O3 nano-composite by addition of HA. Biomaterials 26: 509–519

    Article  CAS  Google Scholar 

  5. Ji Y, Kilner J A, Carolan M F (2005) Electrical properties and oxygen diffusion in yttria-stabilised zirconia (YSZ)-La0.8Sr0.2MnO3±δ (LSM) composites. Sol Stat Ionic 176: 937–943

    Article  CAS  Google Scholar 

  6. Yamahara K, Sholklapper T Z, Jacobson C P, Visco S J, de Jonghe L C (2005) Ionic conductivity of stabilized zirconia networks in composite SOFC electrodes. Sol Stat Ionic 176: 1359–1364

    Article  CAS  Google Scholar 

  7. Diamant Y, Chappel S, Chen S. G, Melamed O, Zaban A (2004) Core-shell nanoporous electrode for dye sensitized solar cells: The effect of shell characteristics on the electronic properties of the electrode. Coord Chem rev 248: 1271–1276

    Article  CAS  Google Scholar 

  8. Subbarao E C, Maiti H S (1984) Solid electrolytes with oxygen ion conduction. Sol Stat Ionic 11: 317–338

    Article  CAS  Google Scholar 

  9. Morita Y, Nakata K, Kim Y H, Sekino T, Niihara K, Ikeuchi K (2004) Wear properties of alumina/zirconia composite ceramics for joint prostheses measured with an end-face apparatus. Bio-Med Mater Eng 14: 263–270

    CAS  Google Scholar 

  10. Minh N Q (1993) Ceramic fuel cells. J Am Ceram Soc 76: 563–588

    Article  CAS  Google Scholar 

  11. Mejri I, Younes M K, Ghorbel A, Eloy P, Gaigneaux E M (2006) Comparative study of the sulfur loss in the xerogel and aerogel sulfated zirconia calcined at different temperatures: effect on n-hexane isomerization. Stud Surf Sci Catal 162: 953–960

    Article  CAS  Google Scholar 

  12. Ward D A, Ko E I (1994) One-Step Synthesis and Characterization of Zirconia-Sulfate Aerogels as Solid Superacids. J Catal 150: 18–33

    Article  CAS  Google Scholar 

  13. Stark J V, Park D G, Lagadic I, Klabunde K J (1996) Nanoscale metal oxide particles/clusters as chemical reagents. Unique surface chemistry on magnesium oxide as shown by enhanced adsorption of acid gases (sulfur dioxide and carbon dioxide) and pressure dependence. Chem Mater 8: 1904–1912

    Article  CAS  Google Scholar 

  14. Bradley D C, Carter D G (1961) Metal oxide alkoxide polymers: part I. the hydrolysis of some primary alkoxides of zirconium. Can J Chem 39: 1434–1443

    Article  CAS  Google Scholar 

  15. Bradley D C, Carter D G (1962) Metal oxide alkoxide polymers: part III the hydrolysis of secondary and tertiary alkoxides of zirconium. Can J Chem 40: 15–21

    Article  CAS  Google Scholar 

  16. Yoldas B E (1982) Effect of variations in polymerized oxides on sintering and crystalline transformations. J Am Ceram Soc 65: 387–393

    Article  CAS  Google Scholar 

  17. Suh D J, Park T J (1996) Sol-gel strategies for pore size control of high-surface-area transition-metal oxide aerogels. Chem Mater 8: 509–513

    Article  CAS  Google Scholar 

  18. Vicarini M A, Nicolaon G A, Teichner S J, (1970) Propriétés texturales et structurales des aerogels d’oxydes de titane et de zirconium prepares en milieu homogène ou hétérogène. Bull Soc Chem France 2:1651–1664

    Google Scholar 

  19. Schwarz J A, Coutescu C, Coutescu A (1995) Methods for preparation of catalytic materials. Chem Rev 95: 477–510

    Article  CAS  Google Scholar 

  20. Suh D J, Park T J (2002) Synthesis of high-surface-area zirconia aerogels with a well-developed mesoporous texture using CO2 supercritical drying. Chem Mater 14: 1452–1954

    Article  CAS  Google Scholar 

  21. Bedilo A F, Klabunde K J (1997) Synthesis of high surface area zirconia aerogels using high temperature supercritical drying. J Nano Mater 8: 119–135

    Article  CAS  Google Scholar 

  22. Zhao Z, Chen D, Jiao X (2007) Zirconia aerogels with high surface area derived from sols prepared by electrolyzing zirconium oxychloride solution: Comparison of aerogels prepared by freeze-drying and supercritical CO2(l) extraction. J Phys Chem C 111: 18738–18743

    Article  CAS  Google Scholar 

  23. Zhang H X, He X D, Li Y, Hong C Q (2006) Preparation of nano-porous zirconia aerogel. J Aero Mater 26: 337–338

    CAS  Google Scholar 

  24. Sui R, Rizkalla A S, Charpentier P A (2006) Direct synthesis of zirconia aerogel nanoarchitecture in supercritical CO2. Langmuir 22: 4390–4396

    Article  CAS  Google Scholar 

  25. Stöcker C, Baiker A (1998) Zirconia aerogels: Effect of acid-to-alkoxide ratio, alcoholic solvent and supercritical drying method on structural properties. J Non Crist Sol 223: 165–178

    Article  Google Scholar 

  26. Ben Hamouda L, Ghorbel A (2006) New process to control hydrolysis step during sol-gel preparation of sulfated zirconia catalysts. J Solgel Sci Techn 39: 123–130

    Article  Google Scholar 

  27. Ward D A, Ko E I (1993) Synthesis and structural transformation of zirconia aerogels; Chem Mater 5: 956–969

    Google Scholar 

  28. Schneider M, Baiker A (1995) Aerogels in catalysis. Catal Rev Scien Eng 37: 515–556

    Google Scholar 

  29. Mrowiec J, Pajak L, Jarzebski A B, Lachowski A I, Malinowski J J (1998) Preparation effects on zirconia aerogel morphology. J Non Cryst Sol 225: 115–119

    Article  Google Scholar 

  30. Lorenzano-Porras C F, Reeder D H, Annen M J, Carr P W, McCormick A V (1995) Unusual sintering behaviour of porous chromatographic zirconia produced by polymerization-induced colloid aggregation. Ind Eng Chem Res 34: 2719–2727

    Article  CAS  Google Scholar 

  31. Tyagi B, Sidhpuria K, Shaik B, Jasra R V (2006) Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying. J Nano Nanotech 6: 1584–1593

    Article  CAS  Google Scholar 

  32. Ferino I, Casula M F, Corrias A, Cutrufello M G, Monaci R, Paschina G (2000) 4-Methylpentan-2-ol dehydration over zirconia catalysts prepared by sol- gel. Phys Chem Chem Phys 2: 1847–1854

    Article  CAS  Google Scholar 

  33. Pajonk G M , El Tanany A (1992) Isomerization and hydrogenation of butene-1 on a zirconia aerogel catalyst. React kine catal letters 47: 167–175

    Article  CAS  Google Scholar 

  34. Kalies H, Pinto N, Pajonk G M, Bianchi D (2000) Hydrogenation of formate species formed by CO chemisorption on a zirconia aerogel in the presence of platinum. Appl Catal A 202: 197–205

    Article  CAS  Google Scholar 

  35. Sun Y, sermon P A (1994) Cu-doped ZrO2 aerogel: A novel catalyst for CO hydrogenation to CH3OH. Topic catal 1: 145–151

    Google Scholar 

  36. Sermon P A, Self V A, Sun Y (1997) Doped-ZrO2 Aerogels: Catalysts of Controlled Structure and Properties. J Sol Gel Sci Techn 8: 851–856

    CAS  Google Scholar 

  37. Chen L, Hu J, Ryan M R, (2008) Catalytic Properties of Nanoscale Iron-Doped Zirconia Solid-Solution Aerogels. Chem Phys Chem 9: 1069–1078

    Article  CAS  Google Scholar 

  38. Zhang Y, Xiang H, Zhong B, Wang Q (1999) ZrO2-SiO2 aerogel supported cobalt catalysts for the synthesis of long-chain hydrocarbon from syngas. Petro Sci Techn 17: 981–998

    Article  CAS  Google Scholar 

  39. Orlovic A M, Janackovic D T, Skala D U, (2005) Aerogels in Catalysis New Developments in Catalysis Research. Nova Science Publishers, Hauppauge NY

    Google Scholar 

  40. Boyse R A (1996) Preparation and characterization of zirconia-phosphate aerogels. Catal letters 38: 225–230

    Article  CAS  Google Scholar 

  41. Younes M K, Ghorbel A, Rives A, Hubaut R (2000) Study of acidity of aerogels ZrO2-SO 2−4 by isopropanol dehydration reaction, surface potential and X-ray photoelectron spectroscopy. J Sol Gel Sci Techn 19: 817–819

    Article  CAS  Google Scholar 

  42. Younes M K, Ghorbel A, Rives A, Hubaut R (2004) Acidity of sulphated zirconia aerogels: Correlation between XPS studies, surface potential measurements and catalytic activity in isopropanol dehydration reaction. J Sol Gel Sci Techn 32: 349–352

    Article  CAS  Google Scholar 

  43. Bedilo A F, Klabunde K J (1998) Synthesis of catalytically active sulfated zirconia aerogels. J catal 176: 448–458

    Article  CAS  Google Scholar 

  44. Akkari R, Ghorbel A, Essayem N, Figueras F, (2007) Synthesis and characterization of mesoporous silica-supported nano-crystalline sulfated zirconia catalysts prepared by a sol-gel process: Effect of the S/Zr molar ratio. Appl Catal A 328: 43–51

    Article  CAS  Google Scholar 

  45. Raissi S, Younes M K, Ghorbel A (2009) Synthesis and characterization of aerogel sulphated zirconia doped with chromium: n-hexane isomerization. J Por Mater DOI 10.1007/s10934-009-9289-0

    Google Scholar 

  46. Boyse R A (1997) Crystallization behaviour of tungstate on zirconia and its relationship to acidic properties: I. Effect of preparation parameters. J Catal 171: 191–207

    CAS  Google Scholar 

  47. Boyse R A, Ko E I (1998) Crystallization behaviour of tungstate on zirconia and its relationship to acidic properties: II. Effect of silica. J Catal 179: 100–110

    Article  CAS  Google Scholar 

  48. Mejri I, Younes M K, Ghorbel A, Eloy P, Gaigneaux E M (2008) Effect of the evacuation mode of solvent on the textural, structural and catalytic properties of sulfated zirconia doped with cerium. Stud Surf Sci Catal 174: 493–496

    Article  Google Scholar 

  49. Ferino I, Casula M F, Corrias A, Cutrufello M G, Monaci R, Paschina G (2000) 4-Methylpentan-2-ol dehydration over zirconia catalysts prepared by sol- gel. Phys Chem Chem Phys 2: 1847–1854

    Article  CAS  Google Scholar 

  50. Richerson D W, (2006) Modern Ceramic Engineering Properties Processing and Use in Design 3/e Taylor and Francis Group Boca Raton

    Google Scholar 

  51. Shackelford J F, Doremus R H, (2008) Ceramic and Glass Materials Springer

    Google Scholar 

  52. Bravo-Leon A, Morikawa Y, Kawahara M, Mayo M J (2002) Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content Acta Mater 50: 4555–4562

    CAS  Google Scholar 

  53. Sakuma T, Yoshizawa Y I, Suto H, (1985) The microstructure and mechanical properties of yttria-stabilized zirconia prepared by arc-melting. J Mater Sci 20: 2399–2407

    Article  CAS  Google Scholar 

  54. Paul A, (1982) Chemistry of Glasses Chapman and Hall. London

    Google Scholar 

  55. Nogami M, Tomozawa M (1986) ZrO2-transformation-toughned glass-ceramics prepared by the sol gel process from metal alkoxides. J Am Ceram Soc 69: 99–102

    Article  CAS  Google Scholar 

  56. Stefanic G, Music S (2002) Factors influencing the stability of low temperature tetragonal ZrO2. Croa. Chem Acta 75: 727–767

    CAS  Google Scholar 

  57. Maiti H S, Gokhale K V G K, Subbarao E C (1972) Kinetics and burst phenomenon in ZrO2 transformation. J Am Ceram Soc 55: 317–322

    Article  CAS  Google Scholar 

  58. Chervin C N, Clapsaddle B J, Chiu H W, Gash A E, Satcher Jr J H, Kauzlarich S M (2006) Role of cyclic ether and solvent in a non-alkoxide sol-gel synthesis of yttria-stabilized zirconia nanoparticles. Chem Mater 18: 4865–4874

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lassaad Ben Hammouda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hammouda, L.B., Mejri, I., Younes, M.K., Ghorbel, A. (2011). ZrO2 Aerogels. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics