Skip to main content

Ray Methods

  • Chapter
  • First Online:
Computational Ocean Acoustics

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

  • 5760 Accesses

Abstract

Ray-based models have been used for many years in underwater acoustics. In the early 1960s, virtually all modeling was done using either normal modes or ray tracing and primarily the latter. Today, however, ray tracing codes have fallen somewhat out of favor in the research community, the problem being the inherent (high frequency) approximation of the method which leads to somewhat coarse accuracy in the results. On the other hand, ray methods are still used extensively in the operational environment where speed is a critical factor and environmental uncertainty poses much more severe constraints on the attainable accuracy. Furthermore, much of the insight derived from studying ray theory is important in interpreting the results of other models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.B. Keller, Rays, waves and asymptotics. Bull. Am. Math. Soc. 84, 727–750 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Lichte, On the influence of horizontal temperature layers in seawater on the range of underwater sound signals. Phys. Z. 17, 385–389 (1919). (translated by A.F. Wittenborn)

    Google Scholar 

  3. V. Červený, Seismic Ray Theory (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  4. F.D. Tappert, Theory of explosive beam spreading due to ray chaos. J. Acoust. Soc. Am. 114, 2775–2781 (2003)

    Article  ADS  Google Scholar 

  5. J. Vidale, Finite-difference calculation of traveltimes. Bull. Seis. Soc. Am. 78, 2062–2076 (1988)

    Google Scholar 

  6. J.A. Sethian, Fast marching methods. SIAM Rev. 41, 199–235 (1999)

    Article  ADS  Google Scholar 

  7. S. Kim, R. Cook, 3D traveltime computations using second-order ENO scheme. Geophysics 64, 1867–1876 (1999)

    Article  ADS  Google Scholar 

  8. W.-K. Jeong, R.T. Whitaker, A fast iterative method for eikonal equations. SIAM J. Sci. Comput. 30, 2512–2534 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Bleistein, Mathematical Methods for Wave Phenomena (Academic, Orlando, FL, 1984)

    MATH  Google Scholar 

  10. V. Červený, Ray tracing algorithms in three-dimensional laterally varying layered structures. in Seismic Tomography, ed. by G. Nolet (Reidel, Boston, MA, 1987)

    Google Scholar 

  11. M.B. Porter, Y-C. Liu, Finite-Element Ray Tracing. in Proceedings of the International Conference on Theoretical and Computational Acoustics, ed. by D. Lee, M.H. Schultz (World Scientific, Singapore, 1994), pp. 947–956

    Google Scholar 

  12. H. Weinberg, R.E. Keenan, Gaussian ray bundles for modeling high-frequency propagation loss under shallow-water conditions. J. Acoust. Soc. Am. 100, 1421–1431 (1996)

    Article  ADS  Google Scholar 

  13. H.P. Bucker, A simple 3-D Gaussian beam sound propagation model for shallow water. J. Acoust. Soc. Am. 95, 2437–2440 (1994)

    Article  ADS  Google Scholar 

  14. D.S. Jones, High-frequency refraction and diffraction in general media. Phil. Trans. R. Soc. Lond. 255, 341–387 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. M.A. Pedersen, D.F. Gordon, Normal-mode and ray theory applied to underwater acoustic conditions of extreme downward refraction. J. Acoust. Soc. Am. 51, 323–368 (1972)

    Article  ADS  MATH  Google Scholar 

  16. Yu.A. Kravtsov, A modification of the geometrical optics method. Radiofizika 7, 664–673 (1964)

    Google Scholar 

  17. Yu.A. Kravtsov, Asymptotic solutions of Maxwell’s equations near a caustic. Radiofizika 7, 1049–1056 (1964)

    Google Scholar 

  18. D. Ludwig, Uniform asymptotic expansion at a caustic. Commun. Pure Appl. Math. 19, 215–250 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  19. Yu.A. Kravtsov, Yu.I. Orlov, Caustics, Catastrophes and Wave Fields, 2nd edn. (Springer, New York, 1999)

    MATH  Google Scholar 

  20. T. Rekdal, B. Biondi, Ray methods in rough models. Stanford Exploration Project Rep. 80 (2001)

    Google Scholar 

  21. G.A. Deschamps, Gaussian beam as a bundle of complex rays. Elect. Lett. 7, 1–2 (1971)

    Article  Google Scholar 

  22. V. Červený, M.M. Popov, I. Pšenčík, Computation of wave fields in inhomogeneous media – Gaussian beam approach. Geophys. J. R. Astron. Soc. 70, 109–128 (1982)

    Article  ADS  MATH  Google Scholar 

  23. M.B. Porter, H.P. Bucker, Gaussian beam tracing for computing ocean acoustic fields. J. Acoust. Soc. Am. 82, 1349–1359 (1987)

    Article  ADS  Google Scholar 

  24. E.K. Westwood, P.J. Vidmar, Eigenray finding and time series simulation in a layered bottom. J. Acoust. Soc. Am. 81, 912–924 (1987)

    Article  ADS  Google Scholar 

  25. C.T. Tindle, G.E.J. Bold, Improved ray calculations in shallow water. J. Acoust. Soc. Am. 70, 813–819 (1981)

    Article  ADS  Google Scholar 

  26. E.L. Murphy, J.A. Davis, Modified ray theory for bounded media. J. Acoust. Soc. Am. 56, 1747–1760 (1974)

    Article  ADS  MATH  Google Scholar 

  27. V. Červený, I. Pšenčík, Gaussian beams in elastic 2-D laterally varying layered structures. Geophys. J. R. Astron. Soc. 78, 65–91 (1984)

    Article  ADS  MATH  Google Scholar 

  28. G. Muller, Efficient calculation of Gaussian-beam seismograms for two-dimensional inhomogeneous media. Geophys. J. R. Astron. Soc. 79, 153–166 (1984)

    Article  ADS  MATH  Google Scholar 

  29. R.W. McGirr, D.B. King, J.A. Davis, J. Campbell, An evaluation of range-dependent ray theory models. Rep. 115. Naval Ocean Research and Development Activity, Bay St. Louis, MS, 1985

    Google Scholar 

  30. T.L. Foreman, Ray modeling methods for range dependent ocean environments. Rep. TR-83-41. Applied Research Laboratories, Austin, TX, 1983

    Google Scholar 

  31. F.B. Hildebrand, Advanced Calculus for Applications, 2nd edn. (Prentice-Hall, Englewood Cliffs, NJ, 1976), pp. 360–361

    Google Scholar 

  32. W.H. Watson, R.W. McGirr, RAYWAVE II: A propagation loss model for the analysis of complex ocean environments. Rep. TN-1516. Naval Ocean Systems Center, San Diego, CA, 1975

    Google Scholar 

  33. J.B. Bowlin, J.L. Spiesberger, T.F. Duda, L.F. Freitag, Ocean acoustical ray-tracing software RAY. Rep. WHOI-93-10. Woods Hole Oceanograpic Institution, Woods Hole, MA, 1992

    Google Scholar 

  34. J.J. Cornyn, GRASS: A digital-computer ray-tracing and transmission-loss-prediction system. Rep. 7621. Naval Research Laboratory, Washington, DC, 1973

    Google Scholar 

  35. B.G. Roberts, Horizontal-gradient acoustical ray-trace program TRIMAIN. Rep. 7827. Naval Research Laboratory, Washington, DC, 1974

    Google Scholar 

  36. C.B. Moler, L.P. Solomon, Use of splines and numerical integration in geometrical acoustics. J. Acoust. Soc. Am. 48, 739–744 (1970)

    Article  ADS  MATH  Google Scholar 

  37. M.A. Pedersen, Acoustic intensity anomalies introduced by constant velocity gradients. J. Acoust. Soc. Am. 33, 465–474 (1961)

    Article  ADS  Google Scholar 

  38. B.R. Julian, D. Gubbins, Three-dimensional seismic ray tracing. J. Geophys. 43, 95–113 (1977)

    Google Scholar 

  39. H.B. Keller, P.J. Perozzi, Fast seismic ray tracing. SIAM J. App. Math. 43, 981–992 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  40. F.D. Tappert, D. Lee, H. Weinberg, The hybrid parabolic equation. in Recent Progress in the Development and Application of the Parabolic Equation, Rep. TD-7145. Naval Underwater Systems Center, New London, CT, 1984

    Google Scholar 

  41. K. Aki, P.G. Richards, Quantitative Seismology: Theory and Methods (Freeman, New York, 1980)

    Google Scholar 

  42. H.G. Schneider, Excess sound propagation loss in a stochastic environment. J. Acoust. Soc. Am. 62, 871–877 (1977)

    Article  ADS  Google Scholar 

  43. C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978)

    MATH  Google Scholar 

  44. M.G. Brown, Application of the WKBJ Green’s function to acoustic propagation in horizontally stratified oceans. J. Acoust. Soc. Am. 71, 1427–1432 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. C.H. Chapman, Fundamentals of Seismic Wave Propagation (Cambridge University Press, Cambridge, 2004)

    Book  Google Scholar 

  46. C.T. Tindle, G.B. Deane, Shallow water sound propagation with surface waves. J. Acoust. Soc. Am. 117, 2783–2794 (2005)

    Article  ADS  Google Scholar 

  47. P. Gerstoft, G.L. D’Spain, W.A. Kuperman, W.S. Hodgkiss, Calculating the waveguide invariant by ray-theoretic approaches. Rep. TM-468. Marine Physical Laboratory, San Diego, CA, 2001

    Google Scholar 

  48. L.M. Brekhovskikh, Yu. Lysanov, Fundamentals of Ocean Acoustics, 2nd edn. (Springer, Berlin, 1991)

    Book  MATH  Google Scholar 

  49. L.D. Landau, E.M. Lifshitz, Mechanics, 3rd edn. (Pergamon, London, 1976)

    MATH  Google Scholar 

  50. A.L. Virovlyansky, Ray travel times at long ranges in acoustic waveguides. J. Acoust. Soc. Am. 113, 2523–2532 (2003)

    Article  ADS  Google Scholar 

  51. R.M. Jones, J.P. Riley, T.M. Georges, HARPO: A versatile three-dimensional Hamiltonian ray-tracing program for acoustic waves in an ocean with irregular bottom. U.S. Dept. of Commerce Rep. Environmental Research Laboratories, Boulder, CO, 1986

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finn B. Jensen .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jensen, F.B., Kuperman, W.A., Porter, M.B., Schmidt, H. (2011). Ray Methods. In: Computational Ocean Acoustics. Modern Acoustics and Signal Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8678-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8678-8_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8677-1

  • Online ISBN: 978-1-4419-8678-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics