Skip to main content

Modeling Daylight Distribution in Complex Architectural Spaces

  • Chapter
  • First Online:
Daylight Science and Daylighting Technology

Abstract

Everybody knows that white surfaces are the brightest and color surfaces reflect mostly that light which is in the wavelength range of the perceived color, that mirrors reflect directly (specularly), and that many matt paints diffuse or scatter and reflect light rays into many directions. Glass that transmits daylight into interiors and also enables view is a common, although specific transparent type with low reflectance. Obviously, the characteristics of reflecting and transmitting characteristics of media are important when interreflection has to be predicted or when a particular class of diffusing materials is to be utilized in interiors, in calculations, or in measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anon: The standardization of daylight measurements. Light and Lighting, 54, 71, (1961)

    Google Scholar 

  • Arndt, W.: Praktische Lichttechnik. Union, Berlin (p.112) (1938)

    Google Scholar 

  • Arndt, W.: The calculation of reflected daylight. Compte Rendu CIE, Vol.2, TC 3.2, A/10 (1955)

    Google Scholar 

  • Beckett, H.E. and Dufton, A.F.: A photographic method of determining Daylight Factors and periods of insolation. Journ. Sci. Instruments, 9, 5, 158–164 (1932)

    Article  ADS  Google Scholar 

  • Buck, G.B.: The correction of light sensitive cells for angle of incidence and spectral quality of light. Illum. Eng., 44, 293–302 (1949)

    Google Scholar 

  • CIBSE – The Chartered Institution of Building Services Engineers: Daylighting and window design, Lighting guide 10, CIBSE, London (1999)

    Google Scholar 

  • Crisp, V.H.C. and Littlefair, P.J.: Average daylight factor prediction. Proc. Nat. Lighting Conf., Cambridge, 234–243, CIBSE, London (1984)

    Google Scholar 

  • Croghan, D.: Transilluminated domical artificial sky. Light and Lighting, 57, 10, 290–293, (1964)

    Google Scholar 

  • Czechoslovak standard: Měření denního osvětlení. (In Czech: Measurement of daylighting.): ČSN 36 0014, Office for Normalization and Measurements, Prague (1967)

    Google Scholar 

  • Dresler, A.: The “Reflected Component” in daylighting design. Transac. Illum.Eng.Soc.(London), 19, 2, 50–60 (1954)

    Google Scholar 

  • Filippi, M., Aghemo, C., Pellegrino, A., Lo Verso, V.: Daylight design through the use of an artificial sky. Proc. 12th Intern. Conf. Light, 117–124, High Tatras, Slovakia (2001)

    Google Scholar 

  • Fok, V.A.: Osveshchennost ot poverkhnostey proizvolnoy formy. (In Russian: Illumination from surfaces of arbitrary shape). Trudy Gos. Opt. Inst. 3, 28, 1–12. Leningrad (1924a)

    Google Scholar 

  • Fok, V.A.: Zur Berechnung der Beleuchtungsstärke. Zeitschr. für Physik, 28, 2, 102–113 (1924b)

    Article  ADS  Google Scholar 

  • Frühling, H.G.: Die Beleuchtung von Innenräumen durch Tageslicht, ihre Messung und ihre Berechnung nach der Wirkungsgradmethode. Lichttechnische Helfe der DBG, Berlin (1928)

    Google Scholar 

  • Griffith, J.W., Arner, W.J., Conover, E.W.: A modified lumen improved method of daylighting design. Illum. Eng., 50, 3, 106 (1955)

    Google Scholar 

  • Griffith, J.W.: Predicting daylight as interior illumination. Libbey-Owens-Ford Glass Co., Ohio (1958)

    Google Scholar 

  • Hamilton, D.C. and Morgan, W.R.: Radiant Interchange Configuration Factors. National Advisory Committee for Aeronautics, Techn. Note NASA 2836, Washington (1952)

    Google Scholar 

  • Hannauer, K.: Mathematisch-graphisches Verfahren zur Ermittlung der Vertikalbeleuchtungsstärke auf den Seitenwände eines Lichthofes oder bei Berücksichtigung der Gesamtreflexion der Seitenwände. Das Licht 10, 12, 153–154, 11, 1 19–20 (1940, 1941)

    Google Scholar 

  • Herman, R.A.: A treatise on geometrical optics. Cambridge University Press, Cambridge (1900)

    MATH  Google Scholar 

  • Hopkinson, R.G., Longmore, J.: Study of the interreflection of daylight using models and artificial skies. Nat. Build. Studies Res. Paper 24, DSIR, London (1954)

    Google Scholar 

  • Hopkinson, R.G., Longmore, J., Petherbridge, P.: An empirical formula for the computation of the Indirect component of Daylight Factor. Transac. Illum. Eng. Soc.(London), 19, 7, 201–219 (1954)

    Google Scholar 

  • Hopkinson, R.G., Petherbridge, P., Longmore, J.: Daylighting. Heinemann, London (1966)

    Google Scholar 

  • IES – Illuminating Engineering Society: The calculation of utilization factors. The BZ method. (1971)

    Google Scholar 

  • IESNA – Illuminating Engineering Society of North America: The IESNA lighting handbook, reference and application. IESNA New York (2000)

    Google Scholar 

  • Khoroshilov P.I.: Raschot svetovogo potoka ot pryamougolnika na pryamougolnik. (In Russian: Calculation of the light flux from a rectangle on a rectangle). Svetotekhnika, 6, 2, 43–47 (1938)

    Google Scholar 

  • Kittler, R.: Razvitye metodov raschota yestestvennogo osveshcheniya pomeščeniy s uchetom otrazhennogo sveta. Svetotekhnika, 2, 2, 18–21 (1956a). English translation by R.G. Hopkinson: Development of methods for the calculation of natural illumination in building, taking into account reflected light. Library Com. 780, Build. Res. Station, Watford (1957)

    Google Scholar 

  • Kittler, R.: An historical review of methods and instrumental daylight research by means of models and artificial skies. P-59.8, 319–334, Vol. B, Proc. CIE Session, Brussels (1959)

    Google Scholar 

  • Kittler, R.: Slnko a svetlo v architektúre. SNTL, Bratislava (1956b). English translation by E. Bok: Sun and light in architecture, Pilkington Broth.Ltd., St. Helens (1963)

    Google Scholar 

  • Kittler, R. and Tino, J.: Einstrahlzahlen bei der Flächenstrahlung in einem rechtwinkligen Raum. Gesundheits-Ingenieur, 84, 1, 15–19 (1963)

    Google Scholar 

  • Kittler, R.: Ob empiricheskikh formulyach dlya opredeleniya otrazhenoy sostavlyayuchey yestestvennoy osveshchennosti pri bokovom osveshcheniyi pomeshcheniy. (In Russian: About empirical formulae for the determination of the reflected component of daylight illuminance in side-lit rooms). Svetotekhnika, 10, 3, 18–21 (1964)

    Google Scholar 

  • Kittler, R. and Kittlerová, L.: Návrh a hodnotenie denného osvetlenia. (In Slovak. Design and assessment of daylight illumination). Slovak Publ. Techn. Lit., Alfa, Bratislava (1968, 1975)

    Google Scholar 

  • Kittler, R.: A new artificial ‘Overcast and Clear Sky’ with an artificial sun for daylight research. Lighting Res. Technol., 6, 4, 227–229, (1974)

    Article  Google Scholar 

  • Krochmann, J.: Über die Bestimmung des Innenreflexionsanteils des Tageslichtquotienten. Lichttechnik, 14, 3, 105–108 (1962)

    Google Scholar 

  • Lambert, J.H.: Photometria sive de mensura et gradibus luminis, colorum et umbrae. Klett Publ., Augsburg (1760). German translation by E. Anding: Lamberts Fotometrie. Klett Publ., Leipzig (1892). English translation by D.L. DiLaura: Photometry, or on the measure and gradation of light, colors and shade. Publ.IES Amer., N.Y. (2001)

    Google Scholar 

  • Li, D.H.W. and Cheung, G.H.W.: Average daylight factor for the 15 CIE standard skies. Lighting Res., Technol., 38, 2, 137–152 (2006)

    Google Scholar 

  • Li, D.H.W., Lam, T.N.T., Lam, J.C.: Average daylight factor under various skies and external environments. Proc. 5th Solaris Conf., 174–179, Univ., of Technol., Brno (2011)

    Google Scholar 

  • Longmore, J.: The role of models and artificial skies in daylight design. Transac. IES., 27, 3, 121–138, (1962)

    Google Scholar 

  • Longmore, J.: Daylighting: a current view. Light and Lighting, 68, 3, 113–119 (1975)

    Google Scholar 

  • Longmore, J.: The engineering of daylight. Developments in lighting - 1, 169–192 (1978)

    Google Scholar 

  • Lo Verso, V.: Progetto di un cielo a luminanza variabile: equazionirelative ai differenti modelli di ciello. (In Italian: Design of a sky with variable luminance: equations for the various models of the sky). Proc. CODEA, Nat. Energy and Environment Conf., Materna, Italy (2000)

    Google Scholar 

  • Lynes, J.A.: A sequence for daylighting design. Light., Res., Technol., 11, 2, 102–106 (1979)

    Google Scholar 

  • MacGowan, D.: Miniaturisation in daylight prediction. Light and Lighting, 58, 8, 256–258 (1965)

    Google Scholar 

  • Mardaljevic, J.: Daylight simulation: Validation, Sky Models and Daylight Coefficients. PhD Thesis, De Montford Univesity, Leicester (1999)

    Google Scholar 

  • Mascart, E.: Sur la mesure de ĺéclairement. Bull. Soc. Int. des èlectr., 5, 103 (1888)

    Google Scholar 

  • Meshkov, V.V.: Osnovy svetotekhniki. (In Russian. Basis of illuminating engineering.) State Energy Publ., Moscow (1957)

    Google Scholar 

  • Moon, P.: The scientific basis of illuminating engineering. McGraw-Hill Inc., Revised edition: Dover Publ., Inc., New York, London (1936, 1961)

    Google Scholar 

  • Moon, P.: Interreflections in rooms. Journ. Opt. Soc. Amer., 31, 734–382, (1941)

    Google Scholar 

  • McNicholas, H.J.: Absolute methods in reflectometry. Bureau of Standards Journ. of Res., 1, 29 (1928)

    Google Scholar 

  • Musgrove, J. and Petherbridge, P.: Lighting-model construction for appraisals of building interiors. Archit., Journ., 125, 3232, 216 (1957)

    Google Scholar 

  • Navaab M.: Scale model photometry techniques under simulated sky conditions. Journ. IES, 1, 57–68 (1996)

    Google Scholar 

  • O’Bien, P.F. and Howard, J.A.: Predetermination of luminances by finite difference equations. Proc. Nat. Techn. Conf. I.E.S., Toronto, (1958)

    Google Scholar 

  • O’Bien, P.F.: An analogue computer for the predetermination of luminance patterns. Paper P-59.18, 235–247, Vol. B, Proc. CIE Session, Brussels (1959)

    Google Scholar 

  • Okado M., Goto, K., Nakamura, H., Koga, Y., Fujii, S.: Development of a new artificial sky. Proc. Lux Pacifica, E63-66 (1997)

    Google Scholar 

  • Petherbridge, P. and Collins, W.M.: The EEL – BRS Daylight photometer. Journ. Sci. Instr., 28, 9, 375 (1961)

    Google Scholar 

  • Pleijel, G.: Daylight investigation. Statens Kom. f. Byggnadsforskning, Rap.17, Stockholm (1949)

    Google Scholar 

  • Pleijel, G. and Longmore, J.: A method of correcting the cosine error of selenium rectifier photocells. Journ. Sci. Instr., 29, 5, 137 (1952)

    Google Scholar 

  • Powell, G.L. and Kellog, W.: Reflecting properties of white interior paints of varying compositions. I.E.S. Transac. 21, 70–78 (1926)

    Google Scholar 

  • Preston J.S., The reflection factor of magnesium oxide. Opt. Soc. Transac., 31, 776 (1929–1930)

    Google Scholar 

  • Preston, J.S.: The specification of the spectral correction filter for photometry with emission photocells. Journ. Sci. Instr., 23, 211–216 (1946)

    Article  ADS  Google Scholar 

  • Reinhart, C.F. and LoVerso, V.L.K.: A rules of thumb based design sequence for diffuse daylight. Light. Res. and Technol., 42, 1, 7–32 (2010)

    Google Scholar 

  • Sale, R.E.: The action of light on the electrical resistance of selenium. Proc. of the Royal Soc., 21, 283–285 (1873)

    Article  Google Scholar 

  • Sapozhnikov, R.A.: Teoreticheskaya fotometriya. (In Russian: Theoretic photometry). Gos. Energet. Izdat. Moscow, Leningrad (1960)

    Google Scholar 

  • Selkowitz, S.: A hemispherical sky simulator for daylight model studies. Proc. 6th Passive Solar Conf., 850–854, University of Delaware (1981)

    Google Scholar 

  • Selkowitz, S., MacGowan, D., McSwain, B., Navvab, M.: A hemispherical Sky Simulator for daylighting studies: Design, construction and operation. Proc. IES Annual Techn. Conf., Toronto, (1981)

    Google Scholar 

  • Schanda, J. et al.: Colorimetry: Understanding the CIE System. CIE Preprint Edition. CIE CB, Vienna (2006)

    Google Scholar 

  • Smith, W.: Effect of light on selenium during the passage of an electrical current. Nature, 303 and Amer. Journ. of Science, 5, 301 (1873)

    Google Scholar 

  • Spitzglas M., Navvab, M., Kim, J.J., Selkowitz, S.: Scale model measurements for a daylighting photometric data base. Journ. IES, 15, 1, 41–61 (1985)

    Google Scholar 

  • Swarbrick, J.: The Swarbrick Daylight Factor Theodolite. British Patent No. 356.822 (1929)

    Google Scholar 

  • Swarbrick, J.: Easements of light. Vol. II. Batsford Ltd., London, Wykeham Press, Manchester (1933)

    Google Scholar 

  • Tregenza, P.R. and Waters, I.M.: Daylight coefficients. Lighting Res. Technol., 15, 2, 65–71 (1983)

    Article  Google Scholar 

  • Tregenza, P.R.: Modification of the split-flux formulae for mean daylight factor and internal reflected component with large external obstructions. Lighting Res. Technol., 21, 3, 125–128 (1989a)

    Article  Google Scholar 

  • Tregenza, P.R.: Daylight measurement in models: New type of equipment. Lighting Res. Technol., 21, 4, 193–194 (1989b)

    Article  Google Scholar 

  • Taylor, A.H.: A simple portable instrument for the absolute measurement of reflection and transmission factors. Scientific Papers of the Bureau of Standards, 16, 391, 421–423 (1920) and 17, 405, 1–6 (1922)

    Google Scholar 

  • Taylor, A.H.: Errors in reflectometry. Journ. of the Opt. Soc. Amer., 25, 51 (1935)

    Article  ADS  Google Scholar 

  • Turner, D.P.: Daylight Factor meter. Journ. Sci. Instr., 37, 9, 316 and 38, 1, 64 (1960, 1961)

    Google Scholar 

  • Turner-Szymanowski, W.: A rapid method for predicting the distribution of daylight in buildings. Eng., Res., Bull., 17, Univ. of Michigan, Ann Arbor (1931)

    Google Scholar 

  • Ulbricht, R.: Die Bestimmung der mittleren räumlichen Lichtintensität durch nur eine Messung. Elekrotechn. Zeitschrift, 29, 595–597 (1900)

    Google Scholar 

  • Ulbricht, R.: Das Kugelphotometer. R. Oldenbourg Verlag, Munich, Berlin (1920)

    Google Scholar 

  • Vitruvius, M.P.: De architectura libri X. Rome (1487) English translation by F. Granger: Of Architecture, The ten books.. Heinemann, London (1970)

    Google Scholar 

  • Ward, G., Rubinstein, F., Clear, R.: A ray tracing solution for diffuse interreflection. Computer Graphics, 22, 4, 85–92 (1988)

    Article  Google Scholar 

  • Yamauti, Z.: The light flux distribution of a system of interreflecting surfaces. J. Opt. Soc. Am., 13, 561–561 (1926)

    Article  ADS  Google Scholar 

  • Yamauti, Z.: The amount of flux incident to rectangular floor through rectangular windows. Res. of the Electrotechn. Lab., Tokyo. No.250 (1929)

    Google Scholar 

References to Appendix

  • Andersen, M., Ljubicic, D., Browne, C., Kleindienst, S., Culpepper, M.: Automated assessment of light redirecting properties of materials and sunlight penetration within scale models. Proc. ISES Solar World Congress (2005)

    Google Scholar 

  • Andersen, M. and de Boer J.: Goniophotometry and assessment of bidirectional photometric properties of complex fenestration systems. Energy and Buildings, 38, 836–848 (2006)

    Article  Google Scholar 

  • Courret, G., Paule, B., Scartezzini, J.L.: Anidolic zenithal openings: Daylighting and shading. Lighting Research and Technology, 28, 1, 11–17 (1996)

    Article  Google Scholar 

  • Darula, S., Rybár, P., Mohelníková, J. Popeliš, M.: Measurement of tubular light guide efficiency under the artificial sky. Przeglad Elektrotechniczny, 86, 10, 177–180 (2010)

    Google Scholar 

  • Edmonds, I.R.: Performance of laser cut light deflecting panels in daylighting applications. Solar Energy Materials and Solar Cells, 29, 1–26 (1993)

    Article  Google Scholar 

  • Gayeski, N. and Andersen, M.: New methods for assessing spectral, bi-directional transmission and reflection by complex fenestration systems. Proc. SOLAR 2007: Sustainable energy puts America to work, Cleveland, 2, 639–646 (2007)

    Google Scholar 

  • Littlefair, P.J.: Innovative daylighting: Review of systems and evaluation methods. Lighting Res. Technol., 22, 1, 1–17 (1990)

    Article  Google Scholar 

  • Müller, H.F.O.: Application of holographic elements in buildings for various purposes like daylighting, solar shading and photo-voltaic power generation. Renewable Energy, 5, 2, 935–941 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Kittler .

Appendix 10

Appendix 10

10.1.1 Special Laboratory Possibilities to Test Complex Interreflections in Designed Architectural Spaces

Unique architectural solutions using exceptional space forms, shapes, color rendering, or unusual fenestration systems for daylighting often present taxing design scenarios. Such novel applications can create very complex interreflection situations with consequences that cannot be predetermined either by calculation methods or by computer programs. However, in a research or testing laboratory equipped with an artificial sky and sun and appropriate photometric facilities, scale model measurements can be made to reveal the effects of complex interreflections or light redistribution influences. Scale models can simulate alternative design scenarios at the early stages of the design process. These can model a black-clad interior in order to separate direct skylight or sunlight influences from those caused by interior interreflectance. With such scale models placed under a sophisticated artificial sky or heliodon, the influence of the sky and sun can be tested under conditions in a sequence of hypothetical modeling alternative solutions.

The traditional use of scale models for the analysis of daylight and sunlight in rooms, atria, or whole architectural complexes can also be similarly scale-modeled and usefully extended to nontraditional special or novel devices such as anidolic systems or hollow light tubes, diffusers, laser-cut panels, and special glazing materials. Side-lit interiors are typically characterized by illuminance decreasing with the distance from the window. Nevertheless, technology can alter the rate of decrease of such lighting. Devices have been designed to transport light during sun-shaded situations or both sunlight and skylight during sunny situations. However, the efficiency of light-guiding systems is different in “enhancement” and “redirection” situations. Edmonds (1993) measured indoor illuminance under various sky conditions in a model room with laser-cut panels which were transparent and deflected skylight deeper into the interior. Courret et al. (1996) built a scale model with anidolic zenithal openings and set it in a heliodon to test the direct and diffuse light penetration into the modeled interior. These measurements confirmed the belief that under various sky luminance distributions there are significant influences on the efficiency of these novel transport or enhancement daylighting devices.

Innovative approaches and special laboratory equipment for the measurement of advanced fenestration daylight delivery systems are now complemented by faster analysis of the optical properties of special glazing materials and the development of digital imaging techniques in the determination of the daylighting performance characteristics of fenestration. Special laboratory instruments have also advanced the state of this art. Goniophotometers were designed and constructed especially for complex fenestration systems (Andersen and de Boer 2006), and for sunlight-simulated penetration using scale models (Andersen et al. 2005). Special glazing, with spectrally and angularly selective coatings, was tested using a scanning and projection goniophotometer and a spectral video-goniophotometer (Gayeski and Andersen 2007), or such innovative daylight systems set under a heliodon tested the direct and diffuse light penetration into the interior (Littlefair 1990). All devices transport light during a sun-shaded situation or both sunlight and skylight during a sunny situation, and the efficiency of light-guiding systems is different in both of these situations. Darula et al. (2010) tested penetration of daylight through a hollow tube under an artificial sky adjusted to uniform and CIE overcast sky luminance distribution. These measurements confirmed the supposition that under various sky luminance patterns there are significant influences on the efficiency of these novel devices.

New light delivery, shading, enhancement, and/or directing optical elements of building fabric, shading systems, and concentrators present many problems which can be investigated and tested in daylight research laboratories prior to field pilot evaluation and real-world validation studies (Müller 1994).

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kittler, R., Kocifaj, M., Darula, S. (2011). Modeling Daylight Distribution in Complex Architectural Spaces. In: Daylight Science and Daylighting Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8816-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8816-4_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8815-7

  • Online ISBN: 978-1-4419-8816-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics