Skip to main content

Sky Luminance Characteristics

  • Chapter
  • First Online:
Daylight Science and Daylighting Technology

Abstract

Any sunbeam or directionally uniform luminous flux formed by parallel rays reaching the atmospheric border will strike tiny air molecules, aerosol particles, or water vapor droplets, which will cause its absorption, scattering, diffusion, and reflection into space. This phenomenon was studied earlier by Bouguer, but Weber (1885) was probably the first to suggest that the resulting luminance distribution into space should be characterized by an irregular luminance solid formed by directional elemental luminance in different directions relative to the original beam. It was assumed that such solids could be usually rotationally symmetrical around the original beam as an axis and could be specified by their sectional curve, called the scattering indicatrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambarzumian, B.: On zhe problem of the diffuse reflection of light. Journ. of Physics, 8, 2, 65–75 (1944)

    Google Scholar 

  • CIE – Commission Internationale de l’Éclairage: Natural Daylight, Official recommendation. Compte Rendu CIE 13th Session, 2, part 3.2, 2–4 (1955)

    Google Scholar 

  • CIE – Commission Internationale de l’Éclairage: Standardisation of luminance distribution on clear skies. CIE Publ. 22. CB CIE Paris (1973)

    Google Scholar 

  • CIE – Commission Internationale de l’Éclairage: Spatial distribution of daylight – CIE Standard General Sky. CIE Standard S 011/E:2003, CB CIE Vienna (2003)

    Google Scholar 

  • Darula, S. and Kittler, R.: New trends in daylight theory based on the new ISO/CIE Sky Standard: 1. Zenith luminance on overcast skies. Build. Res. Journ., 52, 3, 181–197 (2004a)

    Google Scholar 

  • Darula, S. and Kittler, R.: New trends in daylight theory based on the new ISO/CIE Sky Standard: 2. Typology of cloudy skies and their zenith luminance. Build. Res. Journ., 52, 4, 245–255 (2004b)

    Google Scholar 

  • Darula, S. and Kittler, R.: New trends in daylight theory based on the new ISO/CIE Sky Standard: 3. Zenith luminance formula verified by measurement data under cloudless skies. Build. Res. Journ., 53, 1, 9–31 (2005)

    Google Scholar 

  • Darula, S., Kittler, R., Wittkopf, S.K.: Outdoor illuminance levels in the tropics and their representation in virtual sky domes. Architectural Science Review, 49, 3, 301–313 (2006)

    Article  Google Scholar 

  • Darula, S. and Kittler, R.: Sunlight and skylight availability. Advances in Energy Research. 1, 4, 133–182, Nova Publ., NY (2011)

    Google Scholar 

  • Gusev, N. M.: Private communication to CIE TC3.2 with additional scattering indicatrix proposal. (1970)

    Google Scholar 

  • Hopkinson, R.G.: Measurements of sky luminance distribution at Stockholm. Journ. Opt. Soc. Amer., 44, 6, 455–459 (1954)

    Article  ADS  Google Scholar 

  • Fesenkov, V.G. and Pyaskovskaya J.V.: Osveshchennost dnevnogo nebesnogo svoda i indikatrisa rasseyaniya sveta atmosferoy. (In Russian. Illuminance of the daytime sky vault and the scattering indicatrix of light by the atmosphere.), Doklady AN SSSR, 4, 3, 129–132 (1934)

    Google Scholar 

  • Fesenkov, V.G.: O jarkosti bezoblachnogo neba pri sfericheskoy zemlye. (In Russian. About luminance of the cloudless sky for spherical Earth.), Doklady AN SSSR, 101, 5, 845–847 (1955)

    Google Scholar 

  • Fritz, S.: Illuminance and luminance under overcast skies. J. Opt. Soc. Amer., 45, 10, 820–825 (1955)

    Article  ADS  Google Scholar 

  • Gillette, G. and Treado S.: Exploring the issue of sky consitions as applied to current daylight practice. Lighting Design and Application, 15, 5, 23–27 (1985)

    Google Scholar 

  • Gordov, A.N.: O vozmozhnosti primeneniya teoriyi rasseyaniya k realnoj atmosfere. (In Russian. About a possibility of applying the theory of diffusion to the real atmosphere.) Zhurn. Geofiz., 6, 4, 295–324 (1936)

    Google Scholar 

  • Chararattananon, S. and Chaiwiwatworakul, P.: Distribution of sky lluminance and radiance of North Bangkok under standard distributions. Renewable Energy, 32, 1328–1345 (2007)

    Article  Google Scholar 

  • Chararattananon, S. and Chaiwiwatworakul, P.: Application of evolutionary computation for identification of parameters of sky luminance. Leukos, 5, 2, 101–117 (2008)

    Google Scholar 

  • Igawa, N., Nakamura, H., Matsuura, K.: Sky luminance distribution model for all sky conditions. Proc. CIE Session, Warsaw, Vol. l., part 2, 26–28, CIE Publ. No.133 (1999)

    Google Scholar 

  • Igawa, N. and Nakamura H.: All sky model as a standard sky for simulation of daylight environment. Building and Environment, 36, 763–770 (2001)

    Article  Google Scholar 

  • Igawa, N., Koga, Y., Matsuzawa, T., Nakamura, H.: Models of sky radiance distribution and sky luminance distribution. Solar Energy 77, 2, 137–157 (2004)

    Article  Google Scholar 

  • ISO – International Standardisation Organisation: Spatial distribution of daylight – CIE Standard General Sky. ISO Standard 15409:2004 (2004)

    Google Scholar 

  • Kähler, K.: Flächenhelligkeit des Himmels und Beleuchtungsstärke in Räumen. Meteorol. Zeitschrift, 25, 2, 52–57 (1908)

    Google Scholar 

  • Kimball, H.H. and Hand I.F.: Sky brightness and daylight illumination measurements. Monthly Weather Review, 49, 9, 481–488 (1921)

    Article  ADS  Google Scholar 

  • Kittler, R.: Standardisation of the outdoor conditions for the calculation of the Daylight Factor with clear skies. Proc. Sunlight in Buildings, Bouwcentrum Rotterdam, 273–286 (1967)

    Google Scholar 

  • Kittler, R.: Luminance distribution characteristics of homogeneous skies: a measurement and prediction strategy. Light. Res. and Technol., 17, 4, 183–188 (1985)

    Article  Google Scholar 

  • Kittler, R.: Luminance models of homogeneous skies for design and energy performance predictions. Proc. Intern. Daylighting Conf. Long Beach, Calif., 18–22 (1986)

    Google Scholar 

  • Kittler, R. and Pulpitlova, J.: Základy využívania prírodného svetla. (In Slovak. Basis of the utilization of daylight.) Veda Publ., Bratislava (1988)

    Google Scholar 

  • Kittler, R., Darula, S., Perez, R.: A new generation of sky standards. Proc. LuxEuropa Conf., Amsterdam, 359–373 (1997)

    Google Scholar 

  • Kittler, R., Darula, S., Perez, R.: A set of standard skies characterizing daylight conditions for computer and energy conscious design. US-SK grant project. Polygrafia SAV, Bratislava (1998)

    Google Scholar 

  • Kittler, R., Darula, S., MacGowan D.: The critical window luminance causing glare in interiors. In: Selected papers of the light and lighting conference with special emphasis on LEDs and solid state lighting. Publ. CIEx34:2010 (2010)

    Google Scholar 

  • Kondratyev, K.J.: Luchistaya energiya solnca. (In Russian. The radiation energy of the sun.) Gidrometeoizdat, Leningrad. (1954)

    Google Scholar 

  • Kocifaj, M., and Darula, S.: Modelsky – jednoduchý nastroj pre modelovanie rozloženia jasu na oblohe. (In Slovak. Modelsky – the simple tool for sky luminance distribution modelling). Meteorol. Zprávy. 55, 4, 110–118 (2002)

    Google Scholar 

  • Kocifaj, M.: Overcast sky luminance is dependent on the physical state of the atmosphere below cloud level. Light. Res. and Technol., 42, 2, 149–159 (2010)

    Article  Google Scholar 

  • Kocifaj, M.: CIE standard sky model with reduced number of scaling parameters. Solar Energy, 85, 3, 553–559 (2011)

    Google Scholar 

  • Krat, V.A.: Indikatrisa rasseyaniya sveta v zemnoy atmosfere. (in Russian. Indicatrix of light diffusion in earth atmosphere.) Astronom. J., 20, 5–6 (1943)

    Google Scholar 

  • Krochmann, J.: The calculation of the daylight factor for clear sky conditions. Proc. Sunlight in Buildings, Bouwcentrum Rotterdam, 286–301 (1967)

    Google Scholar 

  • Lam, K. P., Mahdavi, A., Ullah, M. B., Ng, E., Pal, P.: Evaluation of six sky luminance prediction models using measured data from Singapore. Lighting Res. Technol., 31, 1, 13–17 (1999)

    Google Scholar 

  • Lambert, J.H.: Merkwürdigste Eigenschaften der Bahn des Lichts durch die Luft und über-haupt durch verschiedene sphärische und centrische Mittel. Hande und Spener Verlag, Berlin (1773)

    Google Scholar 

  • Liebelt, C. and Bodmann H.W.: Leuchtdichte ubd Strahldichteverteilung des trüben Himmels. Archiv Met., Geoph., Bioklim. Ser 3, 27, 325–333 (1979)

    Google Scholar 

  • Lifshic, G.S.: Rasseyaniye sveta v atmosphere. (In Russian. Light diffusion in the atmosphere.) Nauka Publ., Alma Ata (1965)

    Google Scholar 

  • Mie, G.: Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen d. Physik, 25, 377–445 (1908)

    Article  ADS  MATH  Google Scholar 

  • Moon, P. and Spencer D.E.: Illumination from a non-uniform sky. Illum. Eng., 37, 10, 707–726 (1940)

    Google Scholar 

  • Muneer, T.: Comment 1 on ‘Algorithms for calculation of daylight factors in streets’. Light. Res. and Technol., 34, 2, 144–145 (1980)

    Article  Google Scholar 

  • Nagata, T.: Luminance distribution on clear skies. Transac. of Arch. Inst. Japan, 7/185, 65–71 and 8/186, 41–50 (1971)

    Google Scholar 

  • Nagata, T.: Luminance distribution of clear sky and the resultant horizontal illuminance. Journal of Light and Visual Envir. 7, 1, 23–27 (1983)

    Article  ADS  Google Scholar 

  • Perez, R., Ineichen, P., Seals, R., Michalsky, J., Stewart, R.: Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy, 44, 5, 271–289 (1990)

    Google Scholar 

  • Perez, R., Seals, R., Michalsky, J.: All weather model for sky luminance distribution – preliminary configuration and validation. Solar Energy, 50, 3, 235–245 (1993a)

    Article  Google Scholar 

  • Perez, R., Seals, R., Michalsky, J., Ineichen, P.: Geostatistical properties and modeling of random cloud patterns for real skies. Solar Energy, 51, 1, 7–18 (1993b)

    Article  Google Scholar 

  • Perraudeau, M.: Climat luminieux a Nantes. Resultats de 15 mois de mesures. Rep. Centre Scient. Techn., du Batiment, Nantes, 84 pp. (1986)

    Google Scholar 

  • Perraudeau, M.: Luminance models. Proc. Nat. Lighting Conf., 291–292 (1988)

    Google Scholar 

  • Petherbridge, P.: The brightness distribution of the overcast sky when the ground is snow-covered. Quarterly Journ. of the Royal Meteorol. Soc., 81, 349, 4766–477 (1955)

    Google Scholar 

  • Phillips, R.O.: Making the best use of daylight in buildings. Proc. Solar energy applications in design of buildings. Appl. Sci. Publ, Barking, 95–119 (1980)

    Google Scholar 

  • Pokrowski, G.I.: Ãœber die Lichtzerstreuung in der Atmosphäre. Zeitschr. für Physik, 34, 9–11, 49–58 (1925)

    Article  ADS  Google Scholar 

  • Pyaskovskaya-Fesenkova, J.V.: Nekotorye danniye ob atmosfernoy indikatrise rasseyaniya sveta. (In Russian. Some data about the atmospheric indicatrix of light diffusion). Doklady Akad. Nauk SSSR, 86, 5 (1952)

    Google Scholar 

  • Pyaskovskaya-Fesenkova, J.V.: Issledovaniye rasseyaniya sveta v zemnoj atmosfere. (In Russian. Investigation of the light scattering in earth atmosphere.) Izd. Akad. Nauk SSSR. Moscow (1957)

    Google Scholar 

  • Rayleigh, J.W.: On the transmission of light through an atmosphere containing small particles in suspension and on the origin of the blue of the sky. Phil. Mag. 47, 5, 375–384 (1899)

    MATH  Google Scholar 

  • Roy, G.G., Kittler R., Darula S.: An implementation of the Method of Aperture Meridians for the ISO/CIE Standard General Sky. Light. Res. and Technol., 39, 3, 253–264 (2007)

    Article  Google Scholar 

  • Schramm, W.: Ãœber die Helligkeitsverteilung am Himmel. Schriften d. Naturw. Vereins f. Schl.-Holst., 12, 1, 81–129 (1901)

    MathSciNet  Google Scholar 

  • Sobolev, V.V.: Priblizhennoye resheniye zadachi o rasseyaniyi sveta v srede s proizvolnoy indikatrisoy rasseyaniya. (In Russian. The approximative solution of the task about light scattering in the media with an arbitrary scattering indicatrix.) Astronom. Zhurnal, 20, 5–6, 14–22 (1943)

    Google Scholar 

  • Sobolev, V.V.: O rasseyaniyi sveta v atmosferach zemli i planet. (In Russian. About light scattering in the atmosphere of earth and planets.) Uchennye zapiski LGU, ser. matem. nauk, 18, 17–52, 116 (1949)

    Google Scholar 

  • Sobolev, V.V.: Rasseyaniye sveta v atmosferach planet. (In Russian. Light scattering in the atmosphere of planets.) Nauka Publ., Moscow (1972)

    Google Scholar 

  • Steven, M.D. and Unsworth M.H.: The angular distribution and interception of diffuse solar radiation below overcast skies. Quart. Journ. Roy. Met. Soc., 106, 57–61 (1980)

    Article  ADS  Google Scholar 

  • Tregenza, P.:Standard skies for maritime climates. Lighting Res. Technol., 31, 3, 97–106 (1999)

    Google Scholar 

  • Tregenza, P.: Analysing sky luminance scans to obtain frequency distributions of CIE Standard General Skies. Lighting Res. Technol., 36, 4, 271–281 (2004)

    Article  Google Scholar 

  • Valko, P.: Angular distribution of sky radiance and diffuse irradiance on inclined surfaces. I. Cloudless skies. II. Cloudy and overcast skies. In: Course on physical climatology for solar and wind energy. Intern. Centre for Theoret. Physics, Trieste (1986)

    Google Scholar 

  • Weber, L.: Intensitätsmessungen des diffusen Tageslicht. Annal. der Physik und Chemie, 26, 11, 374–389 (1885)

    Article  ADS  Google Scholar 

  • Wittkopf, S. K.: A method to construct Virtual Sky Domes for the use in standard CAD-based light simulation software. Architectural Science Review, 47, 3, 275–286 (2004)

    Article  Google Scholar 

  • Wittkopf, S. and Soon L.K.: Analysing sky luminance scans and predicting frequent sky patterns in Singapore. Lighting Res. Technol., 39, 1, 31–51 (2007)

    Article  Google Scholar 

References to Appendix

  • Darula, S., Kittler, R., Gueymard, C.: Reference luminous solar constant and solar luminance for illuminance calculations. Solar Energy, 79, 4, 559–565 (2005)

    Article  Google Scholar 

  • Fesenkov, V.G., Pyaskovskaya, J.V.: Osveshchennost dnevnogo nebesnogo svoda i indikatrisa rasseyaniya sveta atmosferoy. (In Russian. Illuminance of the daytime sky vault and the scattering indicatrix of light by the atmosphere.), Doklady AN SSSR, 4, 3, 129–132 (1934)

    Google Scholar 

  • Fesenkov, V.G.: O jarkosti bezoblachnogo neba pri sfericheskoy zemlye. (In Russian. About luminance of the cloudless sky for spherical Earth.), Doklady AN SSSR, 101, 5, 845–847 (1955)

    Google Scholar 

  • Igawa, N., Nakamura, H., Matsuzawa, T., Koga, Y., Goto, K., Kojo, S.: Sky luminance distribution between two CIE standard skies. Part 2. Numerical equation for relative sky luminance distribution. Proc. Lux Pacifica Conf., E13-E18 (1997)

    Google Scholar 

  • Igawa, N. and Nakamura, H.: All Sky Model as a standard sky for the simulation of daylit environment. Build. and Environm. 36, 6, 763–770 (2001)

    Article  Google Scholar 

  • Igawa, N., Koga, Y., Matsuzawa, T., Nakamura H.: Models of sky radiance distribution and sky luminance distribution. Solar Energy 77, 2, 137–157 (2004)

    Article  Google Scholar 

  • ISO – International Standardisation Organisation: Spatial distribution of daylight – CIE Standard General Sky. ISO Standard 15409:2004 (2004)

    Google Scholar 

  • Kittler, R.: Luminance models of homogeneous skies for design and energy performance predictions. Proc. Intern. Daylighting Conf. Long Beach, Calif., 18–22 (1986)

    Google Scholar 

  • Kittler, R. and Pulpitlova, J.: Základy využívania prírodného svetla. (In Slovak Basis of the utilization of daylight.) Veda Publ., Bratislava. (1988)

    Google Scholar 

  • Kittler, R., Darula S., Perez R.: A new generation of sky standards. Proc. LuxEuropa Conf., Amsterdam, 359–373 (1997)

    Google Scholar 

  • Kittler, R., Darula S., Perez R.: A set of standard skies characterizing daylight conditions for computer and energy conscious design. US-SK grant project. Polygrafia SAV, Bratislava (1998)

    Google Scholar 

  • Kittler, R., Darula, S.: Determination of sky types from global illuminance. Lighting Res. Technol., 32, 4, 187–193 (2000)

    Article  Google Scholar 

  • Matsuzawa, T., Igawa, N., Nakamura, H., Matsuzawa, T., Koga, Y., Goto, K., Kojo, S.: Sky luminance distribution between two CIE standard skies. Part. 1. Proc. Lux Pacifica Conf., E-7-E-13 (1997)

    Google Scholar 

  • Nagata, T.: Luminance distribution on clear skies. Transac. of Arch. Inst. Japan, 7/185, 65–71 and 8/186, 41–50 (1971)

    Google Scholar 

  • Nagata, T.: Luminance distribution of clear sky and the resultant horizontal illuminance. Journal of Light and Visual Envir., 7, 1, 23–27 (1983)

    Article  ADS  Google Scholar 

  • Perez, R., Ineichen, P., Seals, R., Michalsky, J., Stewart, R.: Modeling daylight availability and irradiance components from direct and global irradiance. Solar Energy, 44, 5, 271–289 (1990)

    Google Scholar 

  • Perez, R., Seals, R., J. Michalsky, J.: Modeling Skylight Angular Distribution from Routine Irradiance Measurements. Proc. IES Annual Conference, San Diego (1992)

    Google Scholar 

  • Perez, R., Seals, R., Michalsky, J.: All weather model for sky luminance distribution – preliminary configuration and validation. Solar Energy, 50, 3, 235–245 (1993)

    Article  Google Scholar 

  • Perradeau, M.: Luminance model. Proc. Nat. Lighting Conf., 291–292 (1988)

    Google Scholar 

  • Sobolev, V.V.: Priblizhennoye resheniye zadachi o rasseyaniyi sveta v srede s proizvolnoy indikatrisoy rasseyaniya. (In Russian. The approximative solution of the task about light scattering in the media with an arbitrary scattering indicatrix.) Astronom. Zhurnal, 20, 5–6, 14–22 (1943)

    Google Scholar 

  • Sobolev, V.V.: O rasseyaniyi sveta v atmosferach zemli i planet. (In Russian. About light scattering in the atmosphere of earth and planets.) Uchennye zapiski LGU, ser.matem. nauk, 18, 17–52, 116 (1949)

    Google Scholar 

  • Sobolev, V.V.: Rasseyaniye sveta v atmosferach planet. (In Russian. Light scattering in the atmosphere of planets.) Nauka Publ., Moscow (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Kittler .

Appendix 5

Appendix 5

5.1.1 Comparison of Basic Approaches and Approximations for Defining the Sky Luminance Patterns

Basic for all relevant sky models defining their luminance patterns are the gradation and indicatrix functions, which predetermine their luminance distribution under actual sun positions and the state of the atmosphere. The first luminance models of Fesenkov (1955) indicated the possible separation of both these functions assuming only the first degree of diffusion in the arbitrary volume of the atmosphere. Several refinements were proposed by Sobolev (1943, 1949, 1972) and Kittler (1967, 1985, 1986), but unfortunately the more complex formulae did not result in higher precision.

Some approximations and simplifications were accepted to determine practical sky models for daylighting purposes. Whereas under overcast conditions only the gradation function has to be simulated by different formulae as described in the appendix in Chap. 4, under cloudy and clear skies both functions are important with a multiplying effect. The indicatrix function was applied in different models in its absolute form \( s\left( \chi \right) \) after (5.5) only rarely for clear sky models (Nagata 1971, 1983), whereas many others applied the relative indicatrix function normalized to the luminance perpendicular to sunbeams, i.e., \( f\left( \chi \right) = {L_{{\rm{\chi }}}}/{L_{{90^\circ }}} \) after (5.6). In this respect many relevant recent sky luminance models (Perez et al. 1993; Kittler et al. 1997, 1998; Igawa et al. 2001, 2004; ISO 2004) have applied the same exponential relations to model the gradation and relative indicatrix functions after (5.21) and (5.23), respectively. The ISO (2004) standard defines the parameters \( a\;{\hbox{and}}\;b \) for the gradation functions, \( c,\,d \), and \( e \) parameters for the relative indicatrix functions for every one of the 15 standard sky types after Kittler et al. (1997, 1998), whereas in both the Perez and Igawa models these parameters are calculated after different indicators, e.g., Perez et al. (1993) specified within the eight ranges of the clearness after four model coefficients for determining the \( {a_{\rm{p}}} - {e_{\rm{p}}} \) parameters in the relation containing also the influence of the sky brightness. So the procedure to find the suitable gradation and indicatrix functions is quite complex and tedious.

Sky luminance distribution modeling was followed by Perez et al. (1993a), applying the first measurement results from the multipurpose scanning photometer (Perez et al. 1992) recorded in Berkeley. The data set taken between June 1985 and December 1986 comprised more than 16,000 sky scans. The so-called all-weather model used the ISO/CIE gradation function and a distorted indicatrix function excluding the normalizing member \( - \exp \left( {d\pi /2} \right) \) in (5.23). This model is based on the two-parameter description, the parameters of sky clearness ∈ and sky brightness \( \Delta \) (Perez et al. 1983), which included the horizontal diffuse irradiance \( {D_{\rm{e}}} \), the zenith angle of the sun position \( {Z_{\rm{s}}} \), the optical air mass m, the solar constant (\( {\hbox{SC}} \)) and normal parallel beam irradiance \( {P_{\rm{en}}} \) as

$$ \in = \frac{{\left( {{D_{{{\rm{e}}\,}}} + {P_{\rm{en}}}} \right)/\,{D_{\rm{e}}} + 1.041\,{Z_{\rm{s}}}^3}}{{1 + 1.041\,{Z_{\rm{s}}}^3}}, $$
(A5.1)
$$ \Delta = \frac{{m{D_{\rm{e}}}}}{\hbox{SC}}. $$
(A5.2)

After these basic two parameters, also Perez’s \( {a_{\rm{P}}},\,{b_{\rm{P}}},\, {c_{\rm{P}}},\,{d_{\rm{P}}} \), and \( {e_{\rm{P}}} \) subparameters for the gradation and indicatrix functions have to be calculated after separate relations and subcoefficients in eight different ranges of sky clearness.

For zenith luminance prediction, Perez et al. (1990) proposed an approximation model with parameters \( {a_i},\,{ }{c_i},\, { }{c\prime_i},\,{\hbox{ and }}{d_i} \) prescribed for each of the eight sky clearness ∈ ranges in a table to be used in the approximation

$$ {L_{\rm{vZ}}} = {D_{\rm{e}}}\,\left[ {{a_i} + {c_i}\cos Z + {{c\prime}_i}\exp \left( { - 3Z} \right) + \Delta {d_i}} \right]\,({\hbox{kcd}}/{{\hbox{m}}^{{2}}}). $$
(A5.3)

The calculation of \( {L_{\rm{vZ}}} \) is based on the pseudo efficacy (kcd/W) to get the zenith luminance expressed in kilocandelas per square meter.

In both the Perez et al. (1993) and Igawa et al. (2004) modeling procedures for momentarily measured irradiance, at least \( {G_{\rm{e}}} \) and \( {D_{\rm{e}}} \) as well as the simultaneously registered solar zenith angle \( {Z_{\rm{s}}} \) have to be available.

In all Igawa’s models, gradation and indicatrix functions and auxiliary relations were determined by regression analysis depending on the momentary solar altitude and the so-called normalized global illuminance \( {N_{\rm{evg}}} \) (Igawa et al. 1997).

The normalization was set as a ratio

$$ {N_{\rm{evg}}} = {E_{\rm{vgm}}}/{E_{\rm{vgms}}}\left( {{\gamma_{\rm{s}}}} \right), $$
(A5.4)

where \( \,{E_{\rm{vgm}}} \) is the so-called relative global illuminance, which is similar to \( {G_{\rm{v}}}/{E_{\rm{v}}} \) but is defined as

$$ {E_{\rm{vgm}}} = m\,{G_{\rm{v}}}/{\hbox{LSC}}. $$
(A5.5)

\( {E_{\rm{vgms}}}\left( {{\gamma_{\rm{s}}}} \right) \) is the relative global illuminance of the CIE standard clear sky under atmospheric transmittance 0.75 estimated in the regression analysis as dependent on the solar altitude γ s by the equation (Igawa et al. 1997)

$$ {E_{\rm{vgms}}}\left( {{\gamma_{\rm{s}}}} \right) = 0.19 + 2.09{\gamma_{\rm{s}}} - 2.581{\gamma_{\rm{s}}}^2 + 1.486{\gamma_{\rm{s}}}^3 - 0.323{\gamma_{\rm{s}}}^4, $$
(A5.6)

previously determined by Matsuzawa et al. (1997) as

$$ \eqalign{ {E_{\rm{vgms}}}\left( {{\gamma_{\rm{s}}}} \right) = 0.197 + 1.943{\gamma_{\rm{s}}} - 2.376{\gamma_{\rm{s}}}^2 \hfill \\\quad \quad \quad \quad + 1.327{\gamma_{\rm{s}}}^3 - 0.232{\gamma_{\rm{s}}}^4 - 0.031{\gamma_{\rm{s}}}^5. \hfill \\}<!endgathered> $$
(A5.7)

The comparison of the Japanese gradation functions with the ISO/CIE gradation functions is given in Fig. 5.4, and indicatrix functions are compared in Fig. A5.1.

Fig. A5.1
figure 7

Comparison of ISO/CIE indicatrix functions with those of Igawa et al. (1997)

Later, more measured data were obtained in Japan using a sun tracker (Fig. A5.2) and an EKO scanner (Fig. A5.3).

Fig. A5.2
figure 8

Japanese sun tracker

Fig. A5.3
figure 9

EKO sky luminance scanner. (Photo by Igawa)

A new version of a model based on radiance distribution was published (Igawa et al. 2004), where differently determined parameters based on global irradiance were given (e.g., \( {\hbox{Ce,}}\;{\hbox{Cle,}}\;{\hbox{Seeg,}}\;{\hbox{Si}} \)), but the ISO/CIE gradation and indicatrix functions were respected. There are a few weak points in applying the latest Japanese method. The main weakness is the basic dependence on \( {G_{\rm{e}}} \) or \( {D_{\rm{e}}} \), which have to be obtained either from a meteorological network or an International Daylight Measurement Programme (IDMP) station. Furthermore, the sky luminance distribution is linked more closely to \( {D_{\rm{e}}} \) or \( {D_{\rm{v}}} \), influenced directly by the luminance patterns, whereas parallel sunbeams in \( {D_{\rm{v}}} \) or \( {G_{\rm{v}}} \) distort the problematic luminous efficacy of \( {D_{\rm{v}}}/{D_{\rm{e}}} \) or \( {G_{\rm{v}}}/{G_{\rm{e}}} \) at different solar altitudes. The complex multiple normalizing system introduced by Igawa et al. (2004) is too complicated for practical use because it produces an infinite number of sky patterns linked to momentary or daily changing \( {G_{\rm{e}}} \) or \( {G_{\rm{v}}} \) and \( {D_{\rm{e}}} \) or \( {D_{\rm{v}}} \) measured values interrelated by the luminous efficacy.

To address the question of whether luminous efficacy could be a representative parameter for sky type classification, two examples of the monthly occurrence were evaluated comparing prevailingly overcast and clear situations in already documented months, i.e., for August 2001 in Fig. A5.4 and for November 1995 in Fig. A5.5.

Fig. A5.4
figure 10

Global luminous efficacy spread dependent on turbidity differences

Fig. A5.5
figure 11

Global luminous efficacy under overcast skies

ISO/CIE clear sky types 11–15 differ in the various turbidities expressed by the luminous turbidity factor \( {T_{\rm{v}}} \), and great variance of the luminous efficacy was found, with the highest under \( {T_{\rm{v}}} = 2 \), but with rising turbidity the variance is suppressed. Probably that it is an effect of the luminous efficacy of sunbeams as well as the diffusivity of the skylight, which is less sensitive to solar altitude changes in the turbid atmosphere.

Data for the global luminous efficacy \( {\hbox{Eff}_{\rm g}} = {G_{\rm{v}}}/{G_{\rm{e}}} \) plotted against solar altitude γ s under the overcast sky type (ISO/CIE sky type 1) show that there is no significant dependence on solar altitude and the values obtained vary by ±10 lm/W around \( {\hbox{Eff}_{\rm g}} = 115\;{\hbox{lm/W}} \).

However, the dependence of these models on the inaccurate luminous efficacy is problematic and questionable.

It is true that in reality only on very seldom occasions are repeated sky luminance patterns, either homogeneous or nonhomogeneous, exactly the same, but these can result in a very similar horizontal irradiance or illuminance level measured at ground level. However, creating the sky gradation and indicatrix functions after such scalar values is very doubtful and cannot predict typical distribution patterns.

The magnitude of skylight is the portion of extraterrestrially available sunlight scattered penetrating the atmosphere expressed by the ratio \( {D_{\rm{e}}}/{E_{\rm{e}}} \) in irradiance unit or \( {D_{\rm{v}}}/{E_{\rm{v}}} \) in illuminance units. Using the ratio \( {D_{\rm{e}}}/{E_{\rm{e}}} \) for predicting sky luminance models assumes the application of luminous efficacy recalculation, which can be inaccurate when diffuse skylight is taken as an average efficacy of 120 lm/W, whereas the extraterrestrial \( {\hbox{LSC}}/{\hbox{SC}} \) is only 97.6 lm/W (Darula et al. 2005), as

$$ \frac{{{D_{\rm{e}}}}}{{{E_{\rm{e}}}}} = \frac{{{D_{\rm{e}}}}}{{{\hbox{SC}}\,\sin {\gamma_{\rm{s}}}}}, $$
(A5.8)
$$ \frac{{{D_{\rm{v}}}}}{{{E_{\rm{v}}}}} = \frac{{{D_{\rm{v}}}}}{{{\hbox{LSC}}\,\sin {\gamma_{\rm{s}}}}}. $$
(A5.9)

In a slightly alternative form, it was used by Perez et al. (1993) as the sky’s brightness after (A5.2):

$$ \Delta = m\frac{{{D_{\rm{e}}}}}{\hbox{SC}}. $$
(A5.10)

The difference between (A5.8) and (A5.10) is very small except at very low solar altitudes, roughly under 15°, as the optical air mass \( m \) deviates from the \( \,1/\sin \,{\gamma_{\rm{s}}} \) values. The argument that parallel sunbeams penetrating the layer of Earth’s atmosphere at \( {\gamma_{\rm{s}}} = 0^\circ \) produce some normal irradiance reduced by the \( m \) value cannot mean that their influence on the horizontal plane is not equal to zero.

Similarly, Igawa and Nakamura (2001) used instead of \( {D_{\rm{e}}}/{E_{\rm{e}}} \) the so-called relative global illuminance in the first step of parameterization:

$$ {E_{\rm{vgm}}} = m\frac{{{G_{\rm{v}}}}}{\hbox{LSC}}. $$
(A5.11)

In Igawa’s earlier studies, his normalization parameter was the value of \( {N_{\rm{evg}}} \)[see (A5.4)], but later he introduced a new normalization factor – the so-called standard global illuminance, which was defined by the best-fit equation

$$ \eqalign{ {S_{\rm{evg}}}\left( {{\gamma_{\rm{s}}}} \right) = - 36.78{\gamma_{\rm{s}}}^5 + 188.79\,{\gamma_{\rm{s}}}^4 - 375.95{\gamma_{\rm{s}}}^3 \hfill \\\quad \quad \quad \quad + 306.2{\gamma_{\rm{s}}}^2 + 15.47{\gamma_{\rm{s}}} + 0.83\,({\hbox{klx}}){.} \hfill \\}<!endgathered> $$
(A5.12)

In Igawa et al. (2004), a similar standard global irradiance assuming a clear sky with the Linke turbidity factor \( {T_{\rm{L}}} = 2.5 \) was used and defined as

$$ {\hbox{Seeg}} = \frac{{0.84{\text{SC}}}}{m}\exp \left( { - 0.0675m} \right)\,({\hbox{W/}}{{\hbox{m}}^{{2}}}), $$
(A5.13)

as a clear sky index:

$$ {\hbox{Kc}} = {G_{\rm{e}}}/{\hbox{Seeg}}. $$
(A5.14)

Thus, the basic parameter in the Igawa and Nakamura (2001) model is called normalized global illuminance:

$$ {N_{\rm{evg}}} = {G_{\rm{v}}}/{S_{\rm{evg}}}\left( {{\gamma_{\rm{s}}}} \right), $$
(A5.15)

which is used to calculate the gradation and indicatrix coefficients and thus their functions.

However, all these changes in the determination of the normalization did not affect the arguments of Kittler and Darula (2000) that only the \( {N_{\rm{evg}}} \) values without further information on the simultaneous solar altitude \( {\gamma_{\rm{s}}} \) and turbidity \( {T_{\rm{v}}} \) cannot replace fully the classification ratio \( {L_{\rm{vZ}}}/{D_{\rm{v}}} \) as well as the approximation owing to luminous efficacy of global horizontal irradiance \( {G_{\rm{e}}} \) or \( {\hbox{Seeg}} \).

Expression (5.20) for the relative luminance distribution is used in a similar form, but instead of the zenith angular distance, elevation angles from the horizon are used; thus,

$$ \frac{{{L_{{{\rm{\chi Z}}}}}}}{{{L_{\rm{vz}}}}} = \frac{{f(\chi )\,\varphi (Z)}}{{f\left( {{Z_{\rm{s}}}} \right)\;\varphi ({0^{ \circ }})}} = \frac{{f\left( \chi \right)\,\varphi \,\left( \gamma \right)}}{{f\left( {\pi /2 - {\gamma_{\rm{s}}}} \right)\,\varphi \,\left( {\pi /2} \right)}}. $$
(A5.16)

The sky radiance distribution was also determined in Igawa et al. (2004), but the gradation and indicatrix functions need an even more complex calculation procedure, as used to determine the gradation and indicatrix coefficients in Igawa and Nakamura (2001) after the sky index \( {\hbox{Si}} \)

$$ {\hbox{Si}} = {\hbox{Kc}} + {\hbox{Cl}}{{\hbox{e}}^{{0.5}}}, $$
(A5.17)

where \( {\hbox{Kc}} \) after (A5.14) is used and the cloudless index first applied in Perradeau’s (1988) sky model is

$$ {\hbox{Cle}} = \frac{{1 - {D_{\rm{e}}}/{G_{\rm{e}}}}}{{1 - {\hbox{C}}{{\hbox{e}}_{\rm{s}}}}}, $$
(A5.18)

where the mean clear sky theoretical cloud ratio value is

$$ \eqalign{ {\hbox{C}}{{\hbox{e}}_{\rm{s}}} = 0.01299 + 0.07698m - 0.003857{m^2} + 0.0001054{m^3} \hfill \\\quad \quad - 0.000001031{m^4}. \hfill \\}<!endgathered> $$
(A5.19)

To determine the gradation and indicatrix coefficients \( \,{a_i} - {e_i} \), Igawa et al. (2004) proposed approximation relations dependent on the sky index \( \,{\hbox{Si}} \), which is also used to classify five basic sky types in \( {\hbox{Si}} \) ranges as follows:

  • Overcast sky if \( {\hbox{Si}} \) is lower than 0.3.

  • Nearly overcast sky when \( {\hbox{Si}} \) is between 0.3 and 0.6.

  • Intermediate sky if \( {\hbox{Si}} = { }0.{6} - {1}.{5} \) .

  • Nearly clear sky if \( {\hbox{Si}} = { 1}.{5} - {1}.{7} \) .

  • Clear sky if \( {\hbox{Si}} \;{\hbox{is over 1}}.{7} \) .

Five similar categories based on the cloudless index \( {\hbox{Cle}} \) were proposed also by Perradeau (1988), who called the \( {\hbox{Cle}} \) value the nebulosity index.

It is evident that all sky models need at least some parameterization base, either the simple expected \( {D_{\rm{v}}}/{E_{\rm{v}}} \) ratio or measured \( {D_{\rm{e}}},{G_{\rm{e}}},m \), or \( {\gamma_{\rm{s}}} \) for a particular situation. Then parameterized cases can be determined for sky radiance or luminance distributions in relative or absolute units. The typology of sky luminance patterns assumes also simple and clear rules to classify sky luminance scans, with certain sky types or standards that can be identified from IDMP regularly measured data. The quasi-homogeneous cases can be selected from all sets using the \( {L_{\rm{vZ}}}/{D_{\rm{v}}} \) parameter within the narrow ±2.5% range of the particular \( {L_{\rm{vZ}}}/{D_{\rm{v}}} \) ISO standard curves. When diffuse sky illuminance or zenith luminance is not measured or is unavailable, then both the Perez and Igawa sky models, respectively, can be used if regular irradiance data measured by meteorological stations with specified time or solar altitude information can be obtained. When no local data can be found, then for practical tasks sky luminance patterns under a selected sky type can be taken from the set of 15 ISO/CIE standards. The great handicap of the Perez model is the absence of the CIE overcast sky probably owing to only the subtropical sky scans gathered in Berkeley, California. Thus, in the eighth overcast clearness category the indicatrix is not exactly \( f\left( {\chi = 1} \right) \) and the gradation \( {L_{\rm{vZ}}}/{L_{\rm{vh}}} \) does not follow the 3:1 decreasing tendency. However, owing to manageable and systematically defined relationships, the Perez model was incorporated into the radiance calculation process, where it is especially suited because of its irradiance-oriented base.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kittler, R., Kocifaj, M., Darula, S. (2011). Sky Luminance Characteristics. In: Daylight Science and Daylighting Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8816-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8816-4_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-8815-7

  • Online ISBN: 978-1-4419-8816-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics