Skip to main content

Sound Field in Shallow Water with Random Inhomogeneities

  • Chapter
  • First Online:
Fundamentals of Shallow Water Acoustics

Part of the book series: The Underwater Acoustics Series ((UA))

  • 1783 Accesses

Abstract

Up to this point now we have considered sound propagation in shallow water as being through a deterministic, inhomogeneous medium. It is well known that these inhomogeneities can have a considerable effect on the propagation of sound. Moreover, we know from oceanography that these random inhomogeneities are primarily concentrated in the top kilometer of the water column (e.g., Babii 1983; Shavcho 1982), which leads to a particularly strong effect of random inhomogeneities in shallow water. Recently, great attention has been paid, both experimentally (Zhou et al. 1996; Headrick et al. 2000) and theoretically (Dozier and Tappert 1978; Gorskaya and Raevskii 1984; Ashley et al. 1987; Kuznetsova 1988; Derevyagina and Katsnel’son 1995; Creamer 1996; Beran and Frankenthal 1992, 1996; Frankenthal 1998), to the study of shallow water as a randomly inhomogeneous medium. Also, the propagation of waves of different kinds in a randomly inhomogeneous medium has been studied for a long time (beginning with Rayleigh) [see, for example, the monographs (Chernov 1958; Rytov et al. 1989; Ishimaru 1978; Flatte 1979)], etc. The major theme of this chapter will thus be the transition from the complex, detailed oceanography (see Chap. 2) to appropriate random medium representations, and then the description of propagation and scattering in these representations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We remark that the coefficient Q depends on water properties (temperature, salinity etc.) and for another depth and region can be different (see Flatte et al. 1979).

  2. 2.

    In some literature, there is another definition \( {\hbox{\it SI}} = {{{\left( {\left\langle {{I^2}} \right\rangle - {{\left\langle I \right\rangle }^2}} \right)}} \left/ {{{{\left\langle I \right\rangle }^2}}} \right.} \).

  3. 3.

    Stochastic boundary conditions lead to analogous equations for mode interactions and so will not be considered separately in what follows.

  4. 4.

    In measurements, i.e., in work with real CW signals, the amplitudes are determined somewhat differently: \( \left| {P(r,z,t)} \right| = \sqrt {{p_{{\cos }}^2(r,z,t) + p_{{\sin }}^2(r,z,t)}} \) where \( {p_{{\sin }}}(r,z,t) = \overline {p(r,z,t)*\sin \omega t} \) and \( {p_{{\cos }}}(r,z,t) = \overline {p(r,z,t)*\cos \omega t} \) are the sine and cosine quadrature components of the real (measured) field \( p(r,z,t) \), related to the field \( P(r,z,t) \) by the equation \( p(r,z,t) = {\hbox{Re}}\left( {P(r,z,t)} \right) \). The overline denotes averaging over the period. Simple transformations show that these two definitions are equivalent.

  5. 5.

    It should be noted that the β 0-behavior is just being studied experimentally at the present day. The β 0-variations caused by background IW were first calculated by Rouseff and Spindel (Rouseff 2001; Rouseff and Spindel 2002).

References

  • Artel’nyi V.V., Raevskii M.A. (1987) Multiple scattering of low-frequency sound waves by ocean turbulence [Sov. Phys. Acoust., Vol. 33(1), pp. 6–12]

    Google Scholar 

  • Artel’nyi V.V., Raevskii M.A. (1984) Statistical characteristics if normal modes in a waveguide with volume random inhomogeneities. [Izv. vuzov. Radiofizika 37(9), p. 1142– 1150] (in Russian)

    Google Scholar 

  • Artel’nyi V.V., Raevskii M.A. (1987) Multiple scattering of waves on anisotropic fluctuations of the refractive index in an infinite medium and refraction waveguides. [Izv. vuzov. Radiofizika 30(7), p. 866–874] (in Russian)

    Google Scholar 

  • Ashley C.E., Siegman W.L., Jacobson M.J. (1987) Random-bottom structured and topographical effects on sound transmission in shallow channel [J. Acoustic Soc. Am., Vol. 81(3) p. 650–659]

    Google Scholar 

  • Babii V.V. (1983) Fine-scale structure of the sound speed field in the ocean. Leningrad, Gidrometeoizdat, 200 p. (in Russian)

    Google Scholar 

  • Beran M.J. Whitman A.M. (1978) Scattering in the depth direction from a quadratic sound channel [J. Acoust. Soc. Am., Vol. 64(2), p. 658–664]

    Google Scholar 

  • Beran M., Frankenthal S. (1996) Combined volume and surface scattering in a channel using a modal formulation. [J. Acoust. Soc. Am. 100 (3), 1463–1472]

    Google Scholar 

  • Beran M., Frankenthal S. (1992) Volume scattering in a shallow channel. [J. Acoust. Soc. Am. 91(6), 3203–3211]

    Google Scholar 

  • Brekhovskikh L.M. (1965) The average field in an underwater sound channel [Sov. Phys.-Acoust., Vol. 11(2), pp. 126–134]

    Google Scholar 

  • Brekhovskikh L.M. (1980) Waves in layered media, 2nd Ed. [Academic Press, New York]

    Google Scholar 

  • Gasparovic R.F., Etkin V.S. (1994) An overview of the Joint US/Russia Internal wave Remote Sensing Experiment. IGARSS’94. Digest, pp. 741–743.

    Google Scholar 

  • Chernov L.A. (1975) Wave propagation in a medium with random inhomogeneities [Moscow, Nauka, 172 p.] (in Russian)

    Google Scholar 

  • Chuprov S.S. (1982) Interference structure of the sound field in a stratified ocean In: Ocean acoustics. Current status (ed) L.M. Brekhovskikh [Moscow, Nauka, p. 71–91] (in Russian)

    Google Scholar 

  • Creamer D. (1996) Scintillating shallow-water waveguides. [J.Acoust.Soc.Am. 99(5), 2825–2838]

    Google Scholar 

  • Derevyagina E.I. and Katsnel’son B.G. (1995) The Effect of random inhomogeneities on the vertical directionality of surface noise in shallow water [Acoust. Phys., Vol. 41(2), pp. 205–209]

    Google Scholar 

  • Dickey T.D. (1991) The emergence of concurrent high-resolution physical and biological measurements in the upper ocean and their application [Rev. Geophys. Res., vol. 29(3), pp. 383–414]

    Google Scholar 

  • Dozier L.B., Tappert F.D. (1978) Statistics of normal mode amplitudes in a random ocean. 1. Theory [J. Acoust. Soc. Am., Vol. 63(2), pp. 353–365]

    Google Scholar 

  • Essen H.H., Schirmer F., Sirkes S. (1987) Acoustic remote sensing of internal waves in shallow water [Int. J. Remote Sensing, Vol. 4(4), pp. 33–47]

    Google Scholar 

  • Fedorov K.N. (1976) Fine thermohaline structure of oceanic water Leningrad Gidrometeoizdat 184p. (in Russian)

    Google Scholar 

  • Fedorov K.N. (1978) Fine structure of hydrophysical field in the ocean Oceanic physics Moscow: Nauka 1 Gidrofizika pp. 113–147 (in Russian)

    Google Scholar 

  • Flatte S.M. (ed) (1979) Sound transmission through a fluctuating ocean [Cambridge University Press]

    Google Scholar 

  • Frankenthal S. (1998) Propagation in random stratified waveguides – A modal spectral treatment. J. Acoust. Soc. Am. 104(6), 3282–3295

    Google Scholar 

  • Garrett C., Munk W.H. (1975) Space–time scales of internal waves: a progress report [J. Geophys. res. Vol. 80, p. 291]

    Google Scholar 

  • Gasparovic R.F., Etkin V.S. (1994) An overview of the Joint US/Russia Internal wave Remote Sensing Experiment. IGARSS’94. Digest, pp. 741–743. (Repetition of 86)

    Google Scholar 

  • Gasparovic R.V., Etkin V.S. (1994) An overview of the Joint U.S./Russia Internal Wave Remote Sensing Experiment [Proceed. of the IGARSS’94 Pasadena pp. 744–746]

    Google Scholar 

  • Gorskaya N.S., Raevskii M.A. (1984) Influence of a Random Internal-Wave field on sound propagation in the ocean [Sov. Phys. Acoust., Vol. 30(2), pp. 108–113]

    Google Scholar 

  • Gurevich A.V., Tsedilina E.E. (1973) Ultra long range propagation of short waves in the ionosphere [Moscow, Nauka, 243 p.] (in Russian)

    Google Scholar 

  • Hampton L.D. (ed) Physics of sound in marine sediments [Plenum Press, New York, (1973)]

    Google Scholar 

  • Headrick R.H., Lynch J.F., Kemp J.K., Newhall A.E., v.d. Heydt K., Apel J., Badiey M., Ching-sang Chiu Finette S., Orr M., Pasewark B., Turgot A., Wolf S., Tielbuerger D. (2000) Acoustic normal mode fluctuation statistics in the 1995 SWARM internal wave scattering experiment [J. Acoust. Soc. Am., Vol. 107(1), pp. 201–220], Modeling mode arrivals in the 1995 SWARM experiment acoustic transmissions [J. Acoust. Soc. Am., Vol. 107(1), pp. 221–236]

    Google Scholar 

  • Ishimaru A. (1978) Wave propagation and scattering in random media [Academic Press, New York]

    Google Scholar 

  • Katsnelson B.G., Kuz’kin V.M., Pereselkov S.A., Petnikov V.G. (1998) Sound wave attenuation in shallow water with rough boundaries [ICA/ASA Proceedings, Seattle pp. 2713–2714]

    Google Scholar 

  • Katsnelson B.G., Petnikov V.G. (2002) Shallow water acoustics. Springer-Verlag.

    Google Scholar 

  • Kohler W. and G. Papanicolaou (1977) Wave propagation in a randomly inhomogeneous ocean In: Wave propagation and underwater acoustics (ed) J.B. Keller and J.S. Papadakis [Springer-Verlag, pp. 153–223]

    Google Scholar 

  • Kuznetsova E.P. (1988) Sound field of surface noise sources in a randomly inhomogeneous waveguide [Sov. Phys. Acoust., Vol. 34(5), pp. 511–514]

    Google Scholar 

  • Marcuse D. (1972) Light transmission optics [Van Nostrand Reinhold, Princeton, New Jersey]

    Google Scholar 

  • Phillips O.M. (1977) The dynamics of upper ocean (2nd edn) [Cambridge University Press]

    Google Scholar 

  • Pierson W.J., Moskowitz L.A. (1964) A proposed spectral form for fully developed wind seas based on the similarity theory of S.A.Kitaigorodsky [J. Geophys. Res., v. 69(24), pp. 5181–5190]

    Google Scholar 

  • Rogers P., Zhou J., Zhang X. Z.,. Li F, et al., (2000) “Seabottom acoustic parameters from inversion of Yellow Sea experimental data,” in Experimental Acoustic In-JASA version Methods for Exploration of the Shallow Water Environment, edited by A. Caiti et al. (Kluwer, Norwell, MA, pp. 219–234.

    Google Scholar 

  • Rouseff D. (2001) Effect of shallow water internal waves on ocean acoustic striation patterns. Waves in Random Media. V.11. P.377–393.

    Google Scholar 

  • Rouseff D. and Spindel R.C. (2002) Modeling the waveguide invariant as a distribution. Ocean acoustic interference phenomena and signal processing ed. W.A. Kuperman and G L d’Spain. New York: AIP pp. 137–148

    Google Scholar 

  • Rouseff D. (2001) Effect of shallow water internal waves on ocean acoustic striation patterns, Waves in Random Media. V.11. P.377–393.

    Google Scholar 

  • Rutenko A.N. (1997) Seasonal variability of intensity and phase fluctuations of low frequency underwater sound signals at the shelf of the Sea of Japan [Acoust. Phys., Vol. 43(1), pp. 84–91]

    Google Scholar 

  • Rytov S.M. Kravtsov Yu.A., Tatarskii V.I. (1989) Principles of statistical radiophysics [Springer-Verlag, Vol. 4]

    Google Scholar 

  • Shmelerv A.Yu. (1990) Ph.D. thesis, General Physics Institute of the USSR Academy of Sciences (in Russian)

    Google Scholar 

  • Shmelerv A.Yu. (1990) Dissertation. Moscow General Physics Institute of the USSR Academy of Sciences (in Russian)

    Google Scholar 

  • Sidenko A.V. (1989) Wave propagation in randomly inhomogeneous dissipative waveguides [Dissertation, Voronezh, p. 120] (in Russian)

    Google Scholar 

  • Whitman A.M., Beran M.J. (1978) Numerical calculation of the intensity distribution in sound channels using coherence theory [J. Acoust. Soc. Am., vol. 63(6), p. 1727–1732]

    Google Scholar 

  • Zhou J., Zhang X., Rogers P.H. (1996) Modal characteristics of acoustic signal fluctuations induced by shallow water internal waves [Proceedings of the Int. Conference OCEANS’96 MTS/IEEE, Florida, USA, pp. 1–8]

    Google Scholar 

  • Shvachko R.F. (1982) Fluctuations of the sound field on random inhomogeneities on the ocean / Ocean acoustics. Modern state. Moscow, Nauka, pp. 132–141. (in Russian)

    Google Scholar 

  • Makris N. C. (1996) The effect of saturated transmission scintillation on ocean acoustic intensity measurements. J. Acoust. Soc. Am. V. 100, N2, pp. 769–783

    Google Scholar 

  • Dyer I. (1970) Statistics of sound propagation in the ocean. J.Acoust.Soc.Am. v.48, N1B, pp 337–345

    Google Scholar 

  • Colosi J.A., Baggeroer, A.B. (2004) On the kinematics of broadband multipath scintillation and the approach to saturation. Acoust. Soc. Am. V. 116, N5, pp. 3515–3522

    Google Scholar 

  • Pasewark, S. N. Wolf, M. H. Orr, and J. F. Lynch, “Acoustic intensity variability in a shallow water environment,” in Impact of Littoral Environmental Variability on Acoustic Predictions and Sonar Performance, edited by N. Pace and F. Jensen ~Kluwer Academic, Dordrecht, 2002, pp. 11–18

    Google Scholar 

  • Fredericks, A., J.A. Colosi, J.F. Lynch, G. Gawarkiewicz, C.-S. Chiu, and P. Abbott, (2005) "Analysis of multipath scintillations from long range acoustic transmission on the New England continental slope and shelf," J. Acoust. Soc. Am., V.117, N3, pp.1038-1057

    Google Scholar 

  • Harrison C.H., Harrison J.H. (1995) A simple relationship between frequency and range averaging for broadband sonar. J.Acoust.Soc. Am. V.97, pp. 1314–1317

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Katsnelson .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Katsnelson, B., Petnikov, V., Lynch, J. (2012). Sound Field in Shallow Water with Random Inhomogeneities. In: Fundamentals of Shallow Water Acoustics. The Underwater Acoustics Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9777-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9777-7_5

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-9776-0

  • Online ISBN: 978-1-4419-9777-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics