Skip to main content

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

Abstract

Strain localization and dislocation microstructure formation are typical features of the plastic deformation of metals and alloys [12.1]. Plastic deformation occurs by the glide of dislocations, and, although the dislocation distributions are rather uniform at its onset, they usually become unstable when deformation proceeds and undergo successive transitions toward various types of microstructures such as cells, deformation bands, persistent slip bands, labyrinth structures, and so on. This phenomenon is experimentally well documented [12.2–12.4], but despite a huge number of theoretical investigations and modeling attempts, it is still poorly undertstood [12.5–12.7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. P. Kubin in Treatise on Materials Science and Technology, R. W. Calm, P. Haasen and E. J. Kramer eds. vol 6, chap 4, VCH, Weinberg (1991).

    Google Scholar 

  2. H. Neuhauser in Patterns. Defects and Materials Instabilities, D. Walgraef and N. M. Ghoniem eds. Kluwer Academic Publishers, Dordrecht, 241 (1990).

    Chapter  Google Scholar 

  3. H. Mughrabi, F. Ackermann and K. Herz in Fatigue Mechanisms, E.T. Fong ed., proc. of an ASTM-NBS-NSF Symposium, ASTM-STP675, Kansas City (1979), p. 69.

    Google Scholar 

  4. T. Tabata, H. Fujita, M. Hiraoka and K. Onishi, Dislocation behavior and the formation of persistent slip bands in copper single crystals observed by high voltage electron microscopy, Phil. Mag. A47, 841 (1983).

    ADS  Google Scholar 

  5. G. Martin and L. R Kubin eds., Nonlinear Phenomena in Materials Science, Trans Tech, Aedermannsdorf(Switzerland), (1988).

    Google Scholar 

  6. G. Martin and L. P. Kubin eds., Nonlinear Phenomena in Materials Science II, Trans ech, Aedermannsdorf(Switzerland) (1988).

    Google Scholar 

  7. D. Walgraef and N. M. Ghoniem eds., Patterns, Defects and Materials Instabilities, Kluwer Academic Publishers, Dordrecht (1990).

    Google Scholar 

  8. D. Walgraef and E. C. Aifantis, Dislocation Patterning as the Result of Dynamical InstabilitiesJ. Appl. Phys. 58, 688 (1985).

    Google Scholar 

  9. J. Kratochvil, On stability of dislocation structures in cyclically deformed metal crystals and formation of persistent slip bands, Rev. Phys. Appliquée 23, 419 (188).

    Article  Google Scholar 

  10. J. Lepinoux and L. P. Kubin, Scripta Met. 21, 947 (1992).

    Google Scholar 

  11. N. M. Ghoniem and R. J. Amodeo, Dislocation dynamics. I. A proposed methodology for deformation micromechanics, Phys. Rev. B41, 6958 (1989).

    Google Scholar 

  12. N. M. Ghoniem and R. J. Amodeo, Dislocation dynamics. II. Applications to the formation of persistent slip bands, planar arrays and dislocation cells, Phys. Rev. B41, 6968 (1989).

    Google Scholar 

  13. M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium Rev. Mod. Phys. 65, 854 (1993).

    Article  ADS  Google Scholar 

  14. D. Walgraef and E. C. Aifantis, On the Formation and Stability of Dislocatio Patterns, Int. J. Eng. Sci., 23, 1351, 1359, and 1364 (1986).

    Article  Google Scholar 

  15. N. M. Ghoniem, J. R. Matthews, and R. J. Amodeo, Res Mechanica, 29, 197 (1990).

    Google Scholar 

  16. P. Neumann, The interactions between dislocations and dislocation dipoles, Acta Met., Acta Met. 19, 1233 (1971).

    Google Scholar 

  17. U. Essmann and H. Muhgrabi, Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities, Phil. Mag. 40, 731 (1979).

    Article  Google Scholar 

  18. D. Walgraef and E. C. Aifantis, Plastic Instabilities, Dislocation Patterns and Nonequilibrium Phenomena, Res Mechanica 23, 161 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walgraef, D. (1997). Plastic Instabilities. In: Spatio-Temporal Pattern Formation. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1850-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1850-0_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7311-0

  • Online ISBN: 978-1-4612-1850-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics