Skip to main content

The Hopf Bifurcation and Related Spatio-Temporal Patterns

  • Chapter
Spatio-Temporal Pattern Formation

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

Abstract

It is now well documented that, despite their complexity, the dynamics of physicochemical systems driven away from thermal equilibrium may be reduced, close to bifurcation points, to much simpler forms describing the universal properties of the spatio-temporal patterns. One of the most celebrated instabilities in this framework corresponds to the Hopf bifurcation that induces oscillations of the limit cycle type, which are of particular interest in nonlinear chemical systems, nonlinear optics and biology. The description of real oscillatory media is based on a combination of generic aspects that depend only on the characteristics of the bifurcation and of the symmetries of the problem and of nongeneric aspects that arise through experimental set-ups, boundary or geometrical effects, and so forth. Hence, it is interesting to discuss both aspects with the simplest description of oscillatory media close to a supercritical Hopf bifurcation, namely the complex Ginzburg-Landau equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. C. Newell, Envelope Equations, Lect. Appl. Math.,15 157 (1974).

    MathSciNet  Google Scholar 

  2. Y. Kuramoto and T. Tsuzuki, Prog. Theor. Phys. 52 1399 (1974); ibid. 54 687 (1975).

    Google Scholar 

  3. for a general review see M. C. Cross and P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod. Phys. 65 851 (1993).

    Article  Google Scholar 

  4. see for example A. C. Newell and J. V. Moloney, Nonlinear Optics,Addison-Wesley, Reading, MA (1992).

    Google Scholar 

  5. N. Bekki and K. Nozaki, Formation of spatial patterns and holes in the generalized Ginzburg-Landau equation Phys. Lett. A110 133 (1985)

    ADS  Google Scholar 

  6. W. van Saarloos and P. C. Hohenberg Fronts, pulses, sources and sinks in generalized Ginzburg-Landau equationsPhysica D56 303 (1992).

    ADS  Google Scholar 

  7. S. Popp, O. Stiller, I. Aranson, A. Weber, and L. Kramer, Stability of phase-singular solutions of the one-dimensional complex Ginzburg-Landau equation, Phys. Rev. Lett. 70 3880 (1993).

    Article  ADS  Google Scholar 

  8. G. Huber, P. Alstrom and T. Bohr, Phys. Rev. Lett. 69 2380,(1992).

    Article  ADS  Google Scholar 

  9. G. I. Sivashinsky, Nonlinear analysis of hydrodynamical instability in laminar flames, Acta Astronautica 4 1177 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Kuramoto, Chemical Oscillations, Waves and Turbulence,Synergetics 19, Springer Verlag, Berlin, 1984.

    Chapter  Google Scholar 

  11. J. M. Hyman, B. Nicolaenko, and S. Zaleski, Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent surfaces, Physica D23 265, (1986).

    MathSciNet  ADS  Google Scholar 

  12. U. Frisch, Z. S. She, and O. Thual, Viscoelastic behavior of cellular solutions of the Kuramoto-Sivashinsky model, J. Fluid Mech. 168 221, (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. P. Manneville in Propagation in Systems far from Equilibrium, Wesfreid J.E., Brand H.R., Manneville P., Albinet G. and Boccara N. eds., Springer Verlag, Berlin, 1988, p. 265.

    Chapter  Google Scholar 

  14. H. Chate and P. Manneville, Role of defects in the transition to turbulence via spatio-temporal intermittency, Physica D37 33 (1989).

    MathSciNet  ADS  Google Scholar 

  15. B. I. Shraiman, A. Pumir, W. van Saarloos, P. C. Hohenberg, H. Chate, and M. Holen, Spatiotemporal chaos in the one-dimensional complex Ginzburg-Landau equation, Physica D57 241 (1992).

    ADS  Google Scholar 

  16. H. Sakaguchi, Breakdown of the phase dynamics, Prog. Theor. Phys. 84 792 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  17. S. Sasa and T. Iwamoto, Localized hole solutions and spatial chaos in the one-dimensional complex Ginzburg-Landau equationPhys. Lett. A 175 289 (1992).

    MathSciNet  ADS  Google Scholar 

  18. P. S. Hagan, Spiral waves in reaction-diffusion equations, SIAM J. Appl. Math. 42 762 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  19. Y. Kuramoto, Chemical Oscillations,Waves and Turbulence, Springer-Verlag, Berlin (1984).

    Book  MATH  Google Scholar 

  20. S. Rica and E. Tirapegui, Dynamics of vortices in the Ginzburg-Landau equation, Phys. Leu. A161 53 (1991).

    Article  MathSciNet  ADS  Google Scholar 

  21. L. M. Pismen and A.A. Nepomnyaschy, On the interaction of spiral waves Physica D 54 183 (1992).

    ADS  Google Scholar 

  22. I. Aranson, L. Kramer and A. Weber, Theory of interaction and bound states of spiral waves in oscillatory mediaPhys. Rev . E 47 3231 (1993).

    ADS  Google Scholar 

  23. Y. Kuramoto, Diffusion-induced chaos in reaction-diffusion systems, Prog. Theor. Phys. Suppl. 64 346 (1978).

    Article  ADS  Google Scholar 

  24. P. Coullet, J. Lega and L. Gil, A form of turbulence associated with defects, Physica D37 91 (1989).

    MathSciNet  ADS  Google Scholar 

  25. L. Gil, J. Lega and J. L. Meunier, Statistical properties of defect-mediated turbulence, Phys. Rev. A41,1138 (1990).

    ADS  Google Scholar 

  26. T. Bohr, A. Pedersen and M. Jensen, Transition to turbulence in a discrete Ginzburg-Landau model, Phys. Rev. A42 3626 (1991).

    ADS  Google Scholar 

  27. F. Hynne, P. Graae Sørensen, and K. Nielsen, J. Chem. Phys 92 1747 (1990).

    Article  ADS  Google Scholar 

  28. F. Hynne and P. Graae Sørensen, Phys. Rev. E40 4106 (1993).

    ADS  Google Scholar 

  29. P. Graae Sørensen and Hynne J. Phys. Chem. 93 5467 (1989).

    Article  Google Scholar 

  30. R. J. Field and M. Burger, Oscillations and Traveling Wavesin Chemical Systems, Wiley, New York (1985).

    Google Scholar 

  31. O. Steinbock and S. Müller, Light-controlled anchoring of meandering spiral waves, Phys. Rev. E47 1506–1509, (1992).

    ADS  Google Scholar 

  32. F. Hynne, P. Graae Sørensen, and T. Moller, J. Chem. Phys. 98 219 (1993).

    Article  ADS  Google Scholar 

  33. C. Vidal and A. Pacault eds., Nonlinear Phenomena in Chemical Dynamics, Springer-Verlag, Berlin (1982).

    Google Scholar 

  34. A. T. Winfree, When Time Breaks Down, Princeton University Press, Princeton (1987).

    Google Scholar 

  35. D. Walgraef in Non Equilibrium Dynamics in Chemical Systems, Vidal C. and Pacault A. eds., Springer-Verlag, Berlin (1984), p. 114.

    Chapter  Google Scholar 

  36. A. Bewersdorff, P. Borckmans, and S. Mueller in Fluid Sciences and Materials Science in Space,Springer-Verlag, Berlin (1987), p. 257.

    Book  Google Scholar 

  37. G. Kshirsagar, Z. Nosticzius, W. D. McCormick, and H. L. Swinney, Spatial patterns in a uniformly fed spatial reactor, Physica D49 5 (1991).

    ADS  Google Scholar 

  38. K. I. Agladze, V. I. Krinskii, and A. M. Pertsov, Chaos in the non-stirred Belousov-Zhabotinsky reaction is induced by interaction of waves and stationary dissipative structures, Nature 308 834 (1984)

    Article  ADS  Google Scholar 

  39. Z. Noszticius, W. Horsthemke, W. D. Mc Cormick, H. L. Swinney, and W. Y. Tam, Sustained chemical waves in an annular gel reactor: a chemical pinwheel, Nature 329 619 (1987).

    Article  ADS  Google Scholar 

  40. V. Castets, E. Dulos, J. Boissonade, and R De Kepper, Experimental evidence of a sustained standing Turing-type nonequilibrium chemical pattern, Phys. Rev. Lett. 64 2953 (1990).

    Article  ADS  Google Scholar 

  41. P. Borckmans, G. Dewel, A. De Wit A., and D. Walgraef in Chemical Waves and Patterns, R. Kapral and K. Showaltere eds., Kluwer, Dordrecht (1994), p. 323.

    Google Scholar 

  42. A. M. Zhabotinskii, A. B. Kiyatkin, and I. R. Epstein in Spatio-Temporal Organization in Nonequilibrium Systems, S. C. Mueller and T. Plesser eds., Projekt Verlag, Dortmund (1992), p. 284.

    Google Scholar 

  43. M. Orban, J. Amer. Chem. Soc. 102 4311 (1980).

    Article  Google Scholar 

  44. R Coullet and K. Emilsson, Strong resonances of spatially distributed oscillators: a laboratory to study patterns and defects, Physica D 61 119 (1992).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Walgraef, D. (1997). The Hopf Bifurcation and Related Spatio-Temporal Patterns. In: Spatio-Temporal Pattern Formation. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1850-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1850-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7311-0

  • Online ISBN: 978-1-4612-1850-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics