Skip to main content

Electromagnetic Waves in Chiral Media

  • Chapter
Recent Advances in Electromagnetic Theory

Abstract

The phenomenon of natural optical activity has played a major role in the study and development of such diverse areas of science as the physics of light, the structure of molecules, and the nature of life itself. Organic optical activity has been looked upon as a unique characteristic of life. The present living matter on Earth is asymmetric, as it contains mainly L-amino acids and D-sugars. An optically active molecule exists in two distinct mirror image forms, it either has the left-handed L- or the right-handed D-type structure. On a macroscopic scale, chirality occurs in nature and in man-made articles. Screws, gloves, golf clubs, and springs are some examples of manufactured chiral objects; whereas flowers, winding vegetations, and snails are a few examples of natural chiral objects.

Any man who, upon looking at his bare feet, doesn’t laugh, has either no sense of symmetry or no sense of humor.

Descartes

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.F. Arago (1811), Sur une modification remarquable qu’éprouvent les rayons lumineux dans leur passage à travers certains corps diaphanes, et sur quelques autres nouveaux phénomenes d’optique, Mém. Inst., 1, 93–134.

    Google Scholar 

  2. J.B. Biot (1812), Mémoire sur un nouveau genre d’oscillations que les molecules de la lumière éprouvent, en traversant certains cristaux, Mém. Inst., 1, 1–372.

    Google Scholar 

  3. J.B. Biot (1817), Sur les rotations que certaines substances impriment aux axes de polarisation des rayons lumineux, Mem. Acad. Sci., 2, 41–136.

    Google Scholar 

  4. J.B. Biot (1835), Mémoire sur la polarisation circulaire et sur ses applications à la chimie organique, Mém. Acad. Sci., 13, 39–175.

    Google Scholar 

  5. J.B. Biot (1815), Phénomènes de polarisation successive, observés dans des fluides homogènes, Bull. Soc. Philomat., 190–192.

    Google Scholar 

  6. A. Fresnel (1822), Mémoire sur la double réfraction que les rayons lumineux eprouvent en traversant les aiguilles de cristal de roche suivant des directions paralléles a l’axe, Oeuvres, 1, 731–751.

    Google Scholar 

  7. A. Fresnel (1866), Oeuvres Complétes, Vol. 2, Imprimerie Impériale, Paris.

    Google Scholar 

  8. L. Pasteur (1848), Sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire, Ann. Chim. Plays., 24, 442–459.

    Google Scholar 

  9. L. Pasteur (1860), Researches on the molecular asymmetry of natural organic products, Alembic Club Reprint No. 14, Livingston, Edinburgh and London.

    Google Scholar 

  10. K.F. Lindman (1920), Über eine durch ein isotropes System von Spiralförmigen Resonatoren erzeugte Rotationspolarisation der elektromagnetischen Wellen, Ann. Physik, 63, 621–644.

    Article  Google Scholar 

  11. K.F. Lindman (1922), Über die durch ein aktives Raumgitter erzeugte Rotationspolarisation der elektromagnetischen Wellen, Ann. Physik, 69, 270–284.

    Article  Google Scholar 

  12. T.M. Lowry (1964), Optical Rotatory Power, Dover, New York.

    Google Scholar 

  13. M. Born (1915), Über die natürliche optische Aktivität von Flüssigkeiten und Gasen, Phys. Z, 16, 251–258.

    Google Scholar 

  14. C.W. Oseen (1915), Über die Wechselwirkung zwischen zwei elektrischen Dipolen und über in Kristallen und Flüssigkeiten, Ann. Physik, 48, 1–56.

    Article  Google Scholar 

  15. F. Gray (1916), The optical activity of liquids and gases, Phys. Rev., 7, 472–488.

    Article  Google Scholar 

  16. W. Kuhn (1929), Quantitative Verhältnisse und Beziehungen bei der natürlichen optischen Aktivität, Z. Phys. Chemie, B4, 14–36.

    Google Scholar 

  17. E.U. Condon, W. Altar, and H. Eyring (1937), One-electron rotatory power, J. Chem. Phys., 5, 753–775.

    Article  Google Scholar 

  18. E.U. Condon (1937), Theories of optical rotatory power, Rev. Mod. Phys., 9, 432–457.

    Article  MATH  Google Scholar 

  19. B.V. Bokut and F.I. Federov (1960), Reflection and refraction of light in optically isotropic active media, Opt. Spektrosk., 9, 334–336.

    Google Scholar 

  20. C.F. Bohren (1974), Light scattering by an optically active sphere, Chem. Phys. Lett., 29, 458–462.

    Article  Google Scholar 

  21. C.F. Bohren (1975), Scattering of electromagnetic waves by an optically active cylinder, J. Colloid. Interface. Sci., 66, 105–109.

    Article  Google Scholar 

  22. J.A. Kong (1975), Theory of Electromagnetic Waves, Wiley-Interscience, New York.

    Google Scholar 

  23. D.L. Jaggard, A.R. Mickelson, and C.H. Papas (1979), On electromagnetic waves in chiral media, Appl. Phys., 18, 211–216.

    Article  Google Scholar 

  24. N. Engheta and A.R. Mickelson (1982), Transition radiation caused by a chiral plate, IEEE Trans. Antennas and Propagation, AP-30, 1213–1216.

    Article  Google Scholar 

  25. M.P. Silverman (1986), Reflection and refraction at the surface of a chiral medium comparison of gyrotropic constitutive relations invariant or noninvariant under a duality transformation, J. Opt. Soc. Amer. A, 3, 830–837.

    Article  Google Scholar 

  26. S. Bassiri, N. Engheta, and C.H. Papas (1986), Dyadic Green’s function and dipole radiation in chiral media, Alta Frequenza, LV-No. 2, 83–88. Also Caltech Antenna Laboratory Report, No. 119, 1985, California Institute of Technology, Pasadena, CA.

    Google Scholar 

  27. D.L. Jaggard, X. Sun, and N. Engheta (1988), Canonical sources and duality in chiral media, IEEE Trans. Antennas and Propagation, AP-36, 1007–1013.

    Article  MathSciNet  Google Scholar 

  28. S. Bassiri, C.H. Papas, and N. Engheta (1988), Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab, J. Opt. Soc. Amer. A, 5, 1450–1459.

    Article  Google Scholar 

  29. E.J. Post (1962), Formal Structure of Electromagnetics, North-Holland, Amsterdam

    MATH  Google Scholar 

  30. J.A. Stratton (1941), Electromagnetic Theory, McGraw-Hill, New York.

    MATH  Google Scholar 

  31. A. Sommerfeld (1954), Optics, Academic Press, New York.

    MATH  Google Scholar 

  32. S. Bassiri (1987), Electromagnetic wave propagation and radiation in chiral media, Ph.D. dissertation. Also Caltech Antenna Laboratory Report, No. 121, California Institute of Technology, Pasadena, CA.

    Google Scholar 

  33. C.H. Papas (1965), Theory of Electromagnetic Wave Propagation, McGraw-Hill, New York.

    Google Scholar 

  34. M. Bora and E. Wolf (1980), Principles of Optics, Pergamon Press, New York.

    Google Scholar 

  35. H.C. Chen (1983), Theory of Electromagnetic Waves, McGraw-Hill, New York.

    Google Scholar 

  36. N. Engheta and S. Bassiri (1989), One- and two-dimensional dyadic Green’s functions in chiral media, IEEE Trans. Antennas and Propagation, AP-37, 512–515.

    Article  MathSciNet  Google Scholar 

  37. C-T. Tai (1971), Dyadic Green’s Functions in Electromagnetic Theory, International Textbook, Scranton, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Bassiri, S. (1990). Electromagnetic Waves in Chiral Media. In: Kritikos, H.N., Jaggard, D.L. (eds) Recent Advances in Electromagnetic Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3330-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3330-5_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7969-3

  • Online ISBN: 978-1-4612-3330-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics