Skip to main content

An Overview of the Theory of the Near-Zone Doppler Effect

  • Chapter
Recent Advances in Electromagnetic Theory

Abstract

It is well known that when an observer in free space is in motion relative to a source of monochromatic electromagnetic radiation, the frequency of radiation as seen by the observer will be higher than that of the source (blue shift) as the source and observer approach each other and will be lower (red shift) as they get farther apart. This effect is known as the “Doppler effect” and was introduced by Christian Doppler in 1843 [1], [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Doppler (1843), Uber das farbige Licht der Doppelsterne, Abhandlungen der Koniglichen Bohmischen Gesellschaft der Wissenschaften.

    Google Scholar 

  2. E.N. Da and C. Andrade (1959), Doppler and the Doppler effect, Endeaver, 18, 69.

    Google Scholar 

  3. I.M. Frank (1943), Doppler effect in a refractive medium, J. Phys. U.S.S.R., 2, 49–67. See also, D.E.H. Rydbeck, Chalmers Research Report, No. 10, 1960.

    Google Scholar 

  4. K.S.H. Lee (1968), Radiation from an oscillating source moving through a dispersive medium with particular reference to the complex Doppler effect, Radio Science, 3, 1098–1104.

    Google Scholar 

  5. K.S.H. Lee and C.H. Papas (1963), Doppler effects in inhomogeneous anisotropic ionized gases, J. Math. Phys., 42, 189–199.

    MathSciNet  Google Scholar 

  6. C.H. Papas (1965), Theory of Electromagnetic Wave Propagation. McGraw-Hill New York.

    Google Scholar 

  7. K.S.H. Lee (1963), On the Doppler effect in a medium, Caltech Antenna Laboratory Report, N. 29, California Institute of Technology. See also, J.M. Jauch and K.M. Watson, Phenomenological quantum electrodynamics, Phys. Rev. 74, 950, 1948.

    Google Scholar 

  8. W. Pauli (1958), Theory of Relativity, Pergamon Press, New York.

    MATH  Google Scholar 

  9. E. Whittaker (1953), A History of the Theories of Aether and Electricity, vol. 2, Harper & Row, New York.

    MATH  Google Scholar 

  10. V. Fock (1952), Theory of Space Time and Gravitation, Pergamon Press, New York.

    Google Scholar 

  11. A. Sommerfeld (1952), Electrodynamics, Academic Press, New York.

    MATH  Google Scholar 

  12. C. Moiler (1952), The Theory of Relativity, Oxford University Press, Fair Lawn, NJ.

    Google Scholar 

  13. A. Einstein, H.A. Lorentz, H. Minkowski, and H. Weyl (1952), The Principle of Relativity; A Collection of Original Memoirs, Dover, New York.

    MATH  Google Scholar 

  14. J.A. Kong (1986), Electromagnetic Wave Theory, Wiley, New York.

    Google Scholar 

  15. C.T. Tai (1971), Dyadic Green’s Function in Electromagnetic Theory, Intext, New York.

    Google Scholar 

  16. C.H. Papas (1963), The role of dyadic Green’s functions in the theory of electromagnetic wave propagation, J. Geophys. Res., 68, 1201.

    Article  MATH  Google Scholar 

  17. P.M. Morse and H. Feshbach (1953), Methods of Theoretical Physics, McGraw-Hill, New York.

    MATH  Google Scholar 

  18. J. Van Bladel (1961), Some remarks on Green’s dyadic for infinite space, IRE Trans. Antennas and Propagation, AP-9, 6, 563–566.

    Article  Google Scholar 

  19. H.C. Chen (1983), Theory of Electromagnetic Waves, McGraw-Hill, New York.

    Google Scholar 

  20. A. Papoulis (1962), The Fourier Integral and Its Applications, McGraw-Hill, New York.

    MATH  Google Scholar 

  21. F.B. Hildebrand (1976), Advanced Calculus for Applications, 2nd ed, Prentice-Hall, Englewood Cliffs, N.J.

    MATH  Google Scholar 

  22. M. Born and E. Wolf (1975), Principles of Optics, Pergamon Press, Oxford.

    Google Scholar 

  23. N. Engheta, A.R. Mickelson, and C.H. Papas (1980), On the near-zone inverse Doppler effect, IEEE Trans. Antennas and Propagation, AP-28, 519–522.

    Article  MathSciNet  Google Scholar 

  24. D.A. Prouty (1982), Investigation of the near-zone Doppler effects, Ph.D. thesis, California Institute of Technology, Pasadena, CA. Also Caltech Antenna Laboratory Technical Report, No. 113, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Engheta, N. (1990). An Overview of the Theory of the Near-Zone Doppler Effect. In: Kritikos, H.N., Jaggard, D.L. (eds) Recent Advances in Electromagnetic Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3330-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3330-5_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7969-3

  • Online ISBN: 978-1-4612-3330-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics