Skip to main content

Analysis of Channeled-Substrate-Planar Double-Heterostructure Lasers Using the Effective Index Technique

  • Chapter
Recent Advances in Electromagnetic Theory

Abstract

Semiconductor lasers have applications as sources in optical communication systems, optical recording, consumer products, and interferometer systems. Because of the rapid advancement of the manufacture of optical fibers with low loss for the transmission of analog and digital signals, research in long-life and low-threshold single-mode laser sources has increased with high intensity over the last 25 years. The realization of high data-rate channels for optical fiber systems has been achieved using a combination of single-mode lasers, single-mode fibers, and high-speed detectors. Compact audio discs, along with other consumer applications such as laser printers, have driven the world production of laser diodes to over a million devices per month. The commercialization of optical memory for computers will provide a further surge in the production of semiconductor lasers. Semiconductor lasers are also being developed for space and satellite communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Sakamoto, D.F. Welch, G.L. Harnagel, W. Streifer, H. Kung, and D.R. Scifres (1988), Ultrahigh power 38 W continuous-wave monolithic laser diode arrays, Appl. Phys. Lett., 52, 26, 2220–2221.

    Article  Google Scholar 

  2. G.A. Evans, N.W. Carlson, J.M. Hammer, M. Lurie, J.K. Butler, S.L. Palfrey, R. Amantea, L.A. Carr, F.Z. Hawrylo, E.A. James, CJ. Kaiser, J.B. Kirk, and W.F. Reichert (1989), Two-dimensional coherent laser arrays using grating surface emission, IEEE J. Quantum Electronics, QE-25, 6, 1525–1538.

    Article  Google Scholar 

  3. K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, R. Ito, Naoki Chinone, and M. Maeda (1978), Transverse mode stabilized AlxGa1-xAs injection lasers with channeled-substrate-planar structure, IEEE J. Quantum Electronics, QE-14, 2, 89–94.

    Article  Google Scholar 

  4. S. Yamamoto, H. Hayashi, S. Yano, T. Sakurai, and T. Hijikata (1982), Visible GaAlAs V-channeled substrate inner stripe laser with stabilized mode using p-GaAs substrate, Appl Phys. Lett., 40, 5, 372–374.

    Article  Google Scholar 

  5. S. Yamamoto, N. Miyauchi, S. Maei, T. Morimoto, O. Yamamoto, S. Yano, and T. Hijikata (1985), High output power characteristics in broad-channeled substrate inner stripe lasers, Appl. Phys. Lett., 46, 4, 319–321.

    Article  Google Scholar 

  6. K. Hamada, M. Wada, H. Shimizu, M. Kume, F. Susa, T. Shibutani, N. Yoshikawa, K. Itoh, G. Kano, and I. Teramoto (1985), A 0.2 W continuous wave laser with buried twin-ridge substrate structure, IEEE J. Quantum Electronics, QE-21, 6, 623–628.

    Article  Google Scholar 

  7. B. Goldstein, M. Ettenberg, N.A. Dinkel, and J.K. Butler (1985), A high-power channeled-substrate-planar AlGaAs laser, Appl. Phys. Lett. 47, 655–657.

    Article  Google Scholar 

  8. T. Shibutani, M. Kume, K. Hamada, H. Shimizu, K. Itoh, G. Kano, and I. Teramoto (1987), A novel high-power laser structure with current-blocked regions near cavity facets, IEEE J. Quantum Electronics, QE-23, 6, 760–764.

    Article  Google Scholar 

  9. T. Kuroda, M. Nakamura, K. Aiki, and J. Umeda (1978), Channeled-substrate-planar structure AlxGa1–xAs lasers: an analytical waveguide study, Appl. Optics, 17, 20, 3264–3267.

    Article  Google Scholar 

  10. K.A. Shore (1981), Above-threshold analysis of channeled-substrate-planar (CSP) laser, IEE Proc. Part I, 9–15.

    Google Scholar 

  11. S. Wang, C. Chen, A.S. Liao, and L. Figueroa (1981), Control of mode behavior in semiconductor lasers, IEEE J. Quantum Electronics, QE-17, 4, 453–468.

    Article  Google Scholar 

  12. J.K. Butler, G.A. Evans, and B. Goldstein (1987), Analysis and performance of channeled-substrate-planar double-heterojunction lasers with geometrical asymmetries, IEEE J. Quantum Electronics, QE-23, 11, 1890–1899.

    Article  Google Scholar 

  13. G.A. Evans, B. Goldstein, and J.K. Butler (1987), Observations and con-sequences of non-uniform aluminum concentrations in the channel regions of AlGaAs channeled-substrate-planar lasers, IEEE J. Quantum Electronics, QE-23, 11, 1900–1908.

    Article  Google Scholar 

  14. T. Ohtoshi, K. Yamaguchi, C. Nagaoka, T. Uda, Y. Murayama, and N. Chinone (1987), A two-dimensional device simulator of semiconductor lasers, Solid-State Electronics, 30, 6, 627–638.

    Article  Google Scholar 

  15. G.A. Evans, J.K. Butler, and V.M. Masin (1988), Lateral optical confinement of channeled-substrate-planar lasers with GaAs/AlGaAs substrates, IEEE J. Quantum Electronics, QE-24, 5, 737–749.

    Article  Google Scholar 

  16. T. Kadowaki, T. Aoyagi, S. Hinata, N. Kaneno, Y. Seiwa, K. Ikeda, and W. Susaki (1986), Long-lived phase-locked laser arrays mounted on an Si-submount with Au-Si solder with a junction-down configuration, IEEE International Semiconductor Laser Conference, Kanazawa, Japan, Conference Program and Abstrate of Papers, pp. 84–85.

    Google Scholar 

  17. B. Goldstein, N.W. Carlson, G.A. Evans, N. Dinkel, and V.J. Masin (1987), Performance of a channeled-substrate-planar high-power phase-locked array operating in the diffraction limit, Electronics Lett., 23, 21, 1136–1137.

    Article  Google Scholar 

  18. M. Taneya, M. Matsumoto, S. Matsui, S. Yano, and T. Hijikata (1985), 0° phase mode operation in phased-array laser diode with symmetrically branching waveguide, Appl. Phys. Lett., 47, 4, 341–343.

    Article  Google Scholar 

  19. D.F. Welch, P. Cross, D. Scifres, W. Streifer, and R.D. Burnham (1986), In-phase emission from index-guided laser array up to 400 mW, Electronics Lett., 22, 6, 293–294.

    Article  Google Scholar 

  20. K. Uomi, S. Nakatsuka, T. Ohtoshi, Y. Ono, N. Chinone, and T. Kajimura (1984), High-power operation of index-guided visible GaAs/GaAlAs multi-quantum well lasers, Appl. Phys. Lett. 45 (8), 818–821.

    Article  Google Scholar 

  21. J. J. Yang, C.S. Hong, J. Niesen, and L. Figueroa (1985), High-power single longitudinal mode operation of inverted channel substrate planar lasers, J. Appl. Phys., 58, 4480–4482.

    Article  Google Scholar 

  22. H. Tanaka, M. Mushiage, Y. Ishida (1985), Single-longitudinal-mode self-aligned (AlGa)As double-heterostructure lasers fabricated by molecular beam epitaxy, Japan. J. Appl. Phys. 24, 2, L89–L90.

    Article  Google Scholar 

  23. K. Yagi, H. Yamauchi, and T. Niina (1986), High external differential quantum efficiency (80%) SCH lasers grown by MBE, IEEE International Semiconductor Laser Conference, Kanazawa, Japan, Conference Program and Abstract of Papers, pp. 158–159.

    Google Scholar 

  24. B. Goldstein, G.A. Evans, N. Dinkel, J. Kirk, and J. Connolly (1988), An efficient AlGaAs channeled-substrate-planar distributed feedback laser, Appl. Phys. Lett., 53, 7, 550–552.

    Article  Google Scholar 

  25. G.A. Evans, J.M. Hammer, N.W. Carlson, F.R. Elia, E.A. James, and J.B. Kirk (1986), Surface-emitting second-order distributed Bragg reflector laser with dynamic wavelength stabilization and far-field angle of 0.25°, Appl. Phys. Lett., 49, 6, 314–315.

    Article  Google Scholar 

  26. H.C. Casey, Jr., D.D. Sell, and K.W. Wecht (1975), Concentration dependence of the absorption coefficient for n- and p-type GaAs between 1.3 and 1.6 eV, J. Appl. Phys., 46, 1, 250–257.

    Article  Google Scholar 

  27. J. Connolly, T.R. Stewart, D.B. Gilbert, S.E. Slavin, D.B. Carlin, and M. Ettenberg (1988), High-power 0.87 µm channeled substrate planar lasers for spaceborn communications, in SPIE Proceedings, Vol. 885, Los Angeles, CA.

    Google Scholar 

  28. H. Kressel and J.K. Butler (1977), Semiconductor Lasers and Heterojunction LEDs, Academic Press, New York, Chap. 7, Sec. 5, pp. 230–234.

    Google Scholar 

  29. T. Hayakawa, T. Suyama, H. Hayashi, S. Yamamoto, S. Yano, and T. Hijikata (1983), Mode characteristics of large-optical-cavity V-channeled substrate inner stripe injection lasers, IEEE J. Quantum Electronics, QE-19, 10, 1530–1536.

    Article  Google Scholar 

  30. J.K. Butler, H. Kressel, and I. Ladany (1975), Internal optical losses in very thin CW heterojunction laser diodes,” IEEE J. Quantum Electronics, QE-11, 7, 402–408.

    Article  Google Scholar 

  31. W. Streifer, Robert D. Burnham, and D.R. Scifres (1976), Substrate radiation losses in GaAs heterostructure lasers, IEEE J. Quantum Electronics, QE-12, 3, 177–182.

    Article  Google Scholar 

  32. D.R. Scifres, W. Streifer, and R.D. Burnham (1976), Leaky wave room-temperature double heterostructure GaAs: GaAlAs diode laser, Appl. Phys. Lett., 29, 1, 23–25.

    Article  Google Scholar 

  33. J. Buus (1979), A model for the static properties of DH lasers, IEEE J. Quantum Electronics, QE-15, 734–739.

    Article  Google Scholar 

  34. R. Lang (1979), Lateral transverse mode instability and its stabilization in stripe geometry injection lasers, IEEE J. Quantum Electronics, QE-15, 718–726.

    Article  Google Scholar 

  35. W. Streifer, D.R. Scifres, and R.D. Burnham (1980), Above-threshold analysis of double-heterojunction diode lasers with laterally tapered active regions, Appl. Phys. Lett., 37, 877–879.

    Article  Google Scholar 

  36. W. Streifer, D.R. Scifres, and R.D. Burnham (1981), Channelled substrate non-planar laser analysis, Part II: Lasers with tapered active regions, IEEE J. Quantum Electronics, QE-17, 1521–1530.

    Article  Google Scholar 

  37. W. Streifer, D.R. Scifres, and R.D. Burnham (1981), Channelled substrate non-planar laser analysis, Part I: for modulation, IEEE J. Quantum Electronics, QE-17, 736–744.

    Article  Google Scholar 

  38. C.B. Su (1981), An analytical solution of kinks and nonlinearities driven by near-field displacement instabilities in stripe geometry diode lasers, J. Appl Phys., 52, 2665–2673.

    Article  Google Scholar 

  39. M. Ueno, R. Lang, S. Matsumoto, H. Kawano, T. Furuse, and I. Sakuma (1982), Optimum designs for InGaAsP/InP(l = 1.3 µm) planoconvex waveguide lasers under lasing conditions, I EE Proc., 129, I, 218–228.

    Google Scholar 

  40. K.A. Shore (1983), Above-threshold current leakage effects in stripe-geometry injection lasers, Opt. Quantum Electronics, 15, 371–379.

    Article  Google Scholar 

  41. G.P. Agrawal (1984), Lateral analysis of quasi-index guided injection lasers: transitions from gain to index guiding, IEEE J. Lightwave Technology, LT-2, 537–543.

    Article  Google Scholar 

  42. J. Buus (1985), Principles of semiconductor laser modelling, IEE Proc. J., 132, 42–51.

    Article  Google Scholar 

  43. E.A.J. Marcatili (1969), Dielectric rectangular waveguide and directional coupler for integrated optics, Bell System Tech. J., 48, 2071–2102.

    Google Scholar 

  44. G.B. Hocker and W.K. Burns (1977), Mode dispersion in diffused channel waveguides by the effective index method, Appl. Opt., 16, 113–118.

    Article  Google Scholar 

  45. W. Streifer and E. Kapon (1979), Applications of the equivalent-index method to DH diode lasers, Appl. Opt., 18, 3724–3725.

    Article  Google Scholar 

  46. J. Manning and R. Olshansky (1983), The carrier-induced index change in AlGaAs and 1.3 µm InGaAs diode lasers, IEEE J. Quantum Electronics, QE-19, 10, 1525–1530.

    Article  Google Scholar 

  47. A. Sommerfeld (1949), Partial Differential Equations in Physics, Academic Press, New York, p. 195.

    MATH  Google Scholar 

  48. L. Lewin (1975), Obliquity-factor correction to solid-state radiation patterns” J. Appl. Phys., 46, 5, 2323–2324.

    Article  MathSciNet  Google Scholar 

  49. T. Tamir and F.Y. Kou (1986), Varieties of leaky waves and their excitation along multilayered structures, IEEE J. Quantum Electronics, QE-22, 4, 544– 551.

    Article  Google Scholar 

  50. L. Figueroa, T.L. Holcomb, K. Burghard, D. Bullock, C.B. Morrison, L.M. Zinkiewicz, and G.A. Evans (1986), Modeling of the optical characteristics for twinchannel laser (TCL) structures, IEEE J. Quantum Electronics, QE-22, 2141–2149.

    Article  Google Scholar 

  51. N.W. Carlson, V.J. Masin, M. Lurie, B. Goldstein, and G.A. Evans (1987), Measurement of the coherence of a single-mode phase-locked diode laser Array, Appl. Phys. Lett., 51, 9, 643–645.

    Article  Google Scholar 

  52. H. Neumann and U. Flohrer (1974), Electron mobility in AlxGa1-x, Phys. Stat. Sol. (a), 25, 2, K145–K147.

    Article  Google Scholar 

  53. S. Adachi (1985), GaAs, AlAs, and AlxGa1_xAs: material parameters for use in research and device parameters, J. Appl. Phys., 58, 3, R1–R29.

    Article  Google Scholar 

  54. S. Todoroki, M. Sawai, and K. Aiki (1985), Temperature distribution along the striped active region in high power GaAlAs visible lasers, J. Appl. Phys., 58, 1124–28.

    Article  Google Scholar 

  55. S. Todoroki (1986), Influence of local heating on current-optical output power characteristics in Ga1-xAlxAs lasers, J. Appl. Phys., 60, 61–65.

    Article  Google Scholar 

  56. S. Chinn and R. Spiers (1982), Calculation of separated multiclad-layer stripe geometry laser modes, IEEE J. Quantum Electronics, QE-18, 6, 984.

    Article  Google Scholar 

  57. M. Amann (1986), Rigorous waveguiding analysis of the separated multicladlayer stripe-geometry laser, IEEE J. Quantum Electronics, QE-22, 10, 1992.

    Article  Google Scholar 

  58. H. Kressel and J.K. Butler (1977), Semiconductor Lasers and Heterojunction LEDs, Academic Press, New York, Chap. 5, p. 172.

    Google Scholar 

  59. R.B. Smith and G.L. Mitchel, Calculation of complex propagating modes in arbitrary, plane-layered, complex dielectric structures. I. Analytic formulation. II. Fortran program MODEIG, EE Technical Report, No. 206, University of Washington, Seattle, WA.

    Google Scholar 

  60. V. Asder, J. Christiansen, and R.D. Russel (1979), COLSYS—a collocation code for boundary value problems, in Codes for Boundary Value Problems, edited by B. Childs et al., Lecture Notes in Computer Science, Vol. 76, Springer-Verlag, New York.

    Google Scholar 

  61. M. Born and E. Wolf (1975), Principles of Optics, Pergamon Press, New York, Chap. 1, pp. 61–66.

    Google Scholar 

  62. J.W. Cahn and D.W. Hoffman (1974), A vector thermodynamics for anisotropic surfaces—II. Curved and faceted surfaces, Acta Metallurgica, 22, 1205–1214.

    Article  Google Scholar 

  63. H. Kressel and J.K. Butler (1977), Semiconductor Lasers and Heterojunction LEDs, Academic Press, New York, Chap. 11, p. 372.

    Google Scholar 

  64. J.K. Butler and D. Botez (1982), Mode characteristics of nonplanar double-heterojunction and large-optical-cavity laser structures, IEEE J. Quantum Electronics, QE-18, 952–961.

    Article  Google Scholar 

  65. J.K. Butler and D. Botez (1984), Lateral mode discrimination and control in high-power single-mode diode lasers of the large-optical-cavity (LOC) type, IEEE J. Quantum Electronics, QE-20, 879–891.

    Article  Google Scholar 

  66. W.B. Joyce (1982), Role of the conductivity of the confining layers in DH-laser spatial hole burning effects, IEEE J. Quantum Electronics, QE-18, 2005–2009.

    Article  Google Scholar 

  67. R. Papannareddy, W.E. Ferguson, Jr., and J.K. Butler (1988), Four models of lateral current spreading in double-heterostructure stripe-geometry lasers, IEEE J. Quantum Electronics, QE-24, 1, 60–65.

    Article  Google Scholar 

  68. H. Yonezu, I. Sakuma, K. Kobayashi, T. Kamejima, M. Ueno, and Y. Nannichi (1973), A GaAs/AlGaAs double heterostructure planar stripe laser, Japan J. Appl Phys., 12, 1585–1592.

    Article  Google Scholar 

  69. J.K. Butler, G.A. Evans, and N.W. Carlson (1989), Nonlinear characterization of modal gain and effective index saturation in channelled-substrate-planar double-heterojunction lasers, IEEE J. Quantum Electronics, QE-25, 7, 1646–1652.

    Article  Google Scholar 

  70. S. Hasuo and T. Ohmi (1974), Spatial distribution of the light intensity in the injection lasers, Japan J. Appl Phys., 13, 1429–1434.

    Article  Google Scholar 

  71. M.J. Adams (1977), Longitudinal field control in stripe-geometry lasers, Electronics Lett. 13, 236–237.

    Article  Google Scholar 

  72. F. Stern (1976), Calculated spectral dependence of gain in excited GaAs, J. Appl Phys., 47, 5382–5386.

    Article  Google Scholar 

  73. N.W. Carlson, V.J. Masin, G.A. Evans, B. Goldstein, and J.K. Butler (1986), Phase front measurements of high-power diode lasers, Paper TuQ6, Digest of Technical Papers, Conference on Lasers and Electro-Optics, San Francisco, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Evans, G.A., Butler, J.K. (1990). Analysis of Channeled-Substrate-Planar Double-Heterostructure Lasers Using the Effective Index Technique. In: Kritikos, H.N., Jaggard, D.L. (eds) Recent Advances in Electromagnetic Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3330-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3330-5_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7969-3

  • Online ISBN: 978-1-4612-3330-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics