Skip to main content

Correlation Theory of Electromagnetic Ridiation Using Multipole Expansions

  • Chapter
Recent Advances in Electromagnetic Theory

Abstract

In electromagnetic theory a wide variety of important problems can be treated in spherical coordinates using multipole expansions. It is also reasonable to expect that these expansions would provide a useful formalism for the solution of problems in statistical electromagnetic theory. The main theme of this chapter is the extension of multipole expansions into the realm of correlation theory. In the initial sections of this chapter, we present the basic elements of the Debye potentials [1], including a detailed discussion of uniqueness. This formulation of the Debye potentials follows the presentation in the literature by Bouwkamp and Casimir [2] as well as that in the treatise by Papas [3]. The elegant formalisms of vector spherical harmonics and dyads are also employed [4]. While this use of vector spherical harmonics and dyads requires some patience in becoming accustomed to the notation [5], we believe that it is particularly worthwhile in several instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Debye (1909), Ann. Phys. (Leip), 30, 57.

    Article  Google Scholar 

  2. C.J. Bouwkamp and H.B.G. Casimir (1954), Physica, 20, 539.

    Article  MathSciNet  MATH  Google Scholar 

  3. C.H. Papas (1965), Theory of Electromagnetic Wave Propagation, McGraw-Hill, New York.

    Google Scholar 

  4. J.M. Blatt and V.F. Weisskopf (1952), Theoretical Nuclear Physics. See, in particular, Appendix B.

    MATH  Google Scholar 

  5. E.L. Hill (1954), Amer. J. Phys., 22, 211.

    Article  MathSciNet  MATH  Google Scholar 

  6. W.H. Carter and E. Wolf (1987), Phys. Rev., A, 36, 1258.

    Article  Google Scholar 

  7. W.B. Davenport and W.L. Root (1958), An Introduction to the Theory of Random Signals and Noise, McGraw-Hill, New York.

    MATH  Google Scholar 

  8. E.T. Copson (1978), An Introduction to the Theory of Functions of a Complex Variable, Oxford University Press, Oxford.

    Google Scholar 

  9. M. Kerker (1969), The Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York.

    Google Scholar 

  10. E.W. Hobson (1939), Spherical and Ellipsoidal Harmonics, Wiley, New York.

    Google Scholar 

  11. E.L. Hill and R. Landshoff (1938), Rev. Mod. Phys., 10, 87.

    Article  MATH  Google Scholar 

  12. M. Abramowitz and I.A. Stegun (1965), Handbook of Mathematical Functions, Dover, New York, Sec. 10.1.

    Google Scholar 

  13. A. Erdelyi (1956), Asymptotic Expansions, Dover, New York, Sec. 3.6.

    MATH  Google Scholar 

  14. A. Nisbet (1955), Physica, 21, 799.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Nisbet (1955), Proc. Roy. Soc. London, A 231, 250.

    MathSciNet  Google Scholar 

  16. C.E. Weatherburn (1949), Advanced Vector Analysis, G. Bell & Sons, London.

    Google Scholar 

  17. W.R. Smythe (1950), Static and Dynamic Electricity, McGraw-Hill, New York.

    Google Scholar 

  18. M. Born and E. Wolf (1980), Principles of Optics, 6th ed., Pergamon Press, Oxford.

    Google Scholar 

  19. E. Wolf (1982), J. Opt. Soc. Amer., 72, 343.

    Article  MathSciNet  Google Scholar 

  20. F.G. Tricomi (1985), Integral Equations, Dover, New York.

    Google Scholar 

  21. F. Smithies (1958), Integral Equations, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  22. E. Wolf (1986), J. Opt. Soc. Amer.A, 3, 76–85.

    Article  Google Scholar 

  23. J.L. Lumley (1970), Stochastic Tools in Turbulence, Academic Press, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

George, N., Gamliel, A. (1990). Correlation Theory of Electromagnetic Ridiation Using Multipole Expansions. In: Kritikos, H.N., Jaggard, D.L. (eds) Recent Advances in Electromagnetic Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3330-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3330-5_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7969-3

  • Online ISBN: 978-1-4612-3330-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics