Skip to main content

Stable Isotopes:History, Units, and Instrumentation

  • Conference paper
Stable Isotopes in Ecological Research

Part of the book series: Ecological Studies ((ECOLSTUD,volume 68))

Abstract

Elements exist in both stable and nonstable (radioactive) forms. Most elements of biological interest have two or more stable isotopes, although one isotope is usually present in far greater abundance. Table 1.1 lists the average natural abundances of the stable isotopes of the major elements used in environmental studies. In addition to the five light elements of importance for biological studies, strontium isotopes are assuming greater importance in understanding ecological transport processes and have therefore been included (see Chapters 14 and 28 for applications of strontium isotopes). Calcium, chlorine, magnesium, potassium, and silicon are additional elements of biological interest having more than one different stable isotope, but unfortunately very little information is available on these elements. While there is no evidence for biological fractionation of these elements, they may serve as potentially useful markers of ecosystem process studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Baertschi P (1953) Die Fraktionierung der returlichen Kohlenstoffisotopen in Kohlendioxydstoffewechsel gruner Pflanzen. Helv. Chim. Acta 36:773–781.

    CAS  Google Scholar 

  • Bender MM (1968) Mass spectrometric studies of carbon-13 variations in corn and other grasses. Radiocarbon 10:468–472.

    Google Scholar 

  • Bender MM (1971) Variations in the 13C/12C ratios of plants in relation to the pathway of carbon dioxide fixation. Phytochemistry 10:1239–1244.

    Article  CAS  Google Scholar 

  • Bender MM, Rouhani I, Vines HM, and Black CC (1973) 13C/12C ratio changes in crassulacean acid metabolism. Plant Physiol. 52:427–430.

    Google Scholar 

  • Bremner JM (1965) Isotope ratio analysis of nitrogen in nitrogen-15 traces investigations, pp. 1256–1286. In Black CA (editor), Methods of Soil Analysis. American Society of Agronomy, Madison, Wisconsin.

    Google Scholar 

  • Broecker WS and Oversley VM (1976) Chemical Equilibria in the Earth. McGraw-Hill, New York.

    Google Scholar 

  • Craig H (1953) The geochemistry of stable carbon isotopes. Geochim. Cosmochim. Acta 3:53–92.

    CAS  Google Scholar 

  • Craig H (1954) Carbon-13 in plants and the relationship between carbon-13 and carbon- 14 variations in nature. J. Geol. 62:115–149.

    Article  CAS  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703.

    Article  PubMed  CAS  Google Scholar 

  • Coplen TB, Kendall C, and Hopple J (1983) Comparison of stable isotope reference samples. Nature 302:236–238.

    Article  CAS  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468.

    Article  Google Scholar 

  • Deines P (1980) The isotopic composition of reduced organic carbon, pp. 329–406. In Fritz P and Fontes JC (editors), Handbook of Environmental Isotope Geochemistry. Elsevier, Amsterdam.

    Google Scholar 

  • Delwiche CC and Steyn P (1970). Nitrogen isotope fractionation in soils and microbiol reactions. Environ. Sci. Technol. 4:929–935.

    Article  CAS  Google Scholar 

  • DeNiro MJ and Epstein S (1979) Relationship between the oxygen isotope ratios of terrestrial plant cellulose, carbon dioxide and water. Science 204:51–53.

    Article  PubMed  CAS  Google Scholar 

  • Epstein S (1959) The variations of the O18/O16 ratio in nature and some geological implications. pp. 217–240. In Abelson PH (editor), Research in Geochemistry. John Wiley and Sons, New York.

    Google Scholar 

  • Gaebler OH, Vitti TG, and Vumirovich R (1966) Isotope effects in metabolism of l5N and 14N from unlabeled dietary proteins. J. Biochem. Phys. 44:1245–1257.

    Google Scholar 

  • Gat JR (1982) The isotopes of hydrogen and oxygen in precipitation, pp. 21–47. In Hoefs J (editor), Stable Isotope Geochemistry. Springer-Verlag, Berlin.

    Google Scholar 

  • Giaque, N.F and Johnston HL (1929) An isotope of oxygen mass 18. J. Am. Chem. Soc. 51:1436–1441.

    Article  Google Scholar 

  • Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271:534–536.

    Article  CAS  Google Scholar 

  • Gonfiantini R, Gratsin S and Tonqiori E (1965) Oxygen isotopic composition of water in leaves, p. 405. In Isotopes and Radiation in Soil. Plant Nutrition Studies. International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Hatch MD and Slack CR (1970) The C4 carboxylic acid pathway of photosynthesis, pp. 35–106. In Reinhold L and Liwschitz Y (editors), Progress in Phytochemistry. Wiley Interscience, New York.

    Google Scholar 

  • Hayes JM (1983) Practice and principles of isotopic measurements in organic geochem¬istry. pp. 5–31. In Meinschein WG (editor), Organic Geochemistry of Contempor¬aneous and Ancient Sediments. Society of Economic Paleontologists and Mineral-ogists, Bloomington, Indiana.

    Google Scholar 

  • Hoefs J (1980) Stable Isotope Geochemistry. Springer-Verlag, Berlin, p. 208.

    Google Scholar 

  • Hoering TC (1955) Variations of nitrogen-15 abundance in naturally occurring substance. Science 122:1233–1234.

    Article  PubMed  CAS  Google Scholar 

  • Hoering TC (1957) Isotopic composition of the ammonia and nitrate ions in rain. Geochim. Cosmochim. Acta 12:97–102.

    CAS  Google Scholar 

  • Hoering TC and Ford HT (1960) Isotope effect in the fixation of nitrogen by Azotobacter. J. Am. Chem. Soc. 82:376–378.

    Article  CAS  Google Scholar 

  • Kohl DH, Shearer GB and Commoner B (1971) Fertilizer nitrogen:contribution to nitrate in surface water in a corn belt watershed. Science 174:1331–1336.

    Article  PubMed  CAS  Google Scholar 

  • Kortschak HP, Hartt CE and Burr GO (1965) Carbon dioxide fixation in sugar cane leaves. Plant Physiol. 40:209–213.

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy RV and Epstein S (1985) Tree ring D/H ratio from Kenya, East Africa and its poleoclimatic significance. Nature 317:160–162.

    Article  Google Scholar 

  • Krouse HR (1980) Sulphur isotopes in our environment, pp. 435–371. In Hoefs J (editor), Stable Isotope Geochemistry. Springer-Verlag, Berlin.

    Google Scholar 

  • Lehrman JC and Queiroz O (1974) Carbon fixation and isotope discrimination by a crassulacean plant:dependence on the photoperiod. Science 183:1207–1209.

    Article  Google Scholar 

  • McKinney CR, McCrea JM, Epstein S, Allen HA, and Urey HC (1950) Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev. Sci. Instrum. 21:724–730.

    Article  PubMed  CAS  Google Scholar 

  • Macko SA, Estep MF, Engel MH, and Hare PE (1986) Kinetic fractionation of stable nitrogen isotopes during amino acid transamination. Geochim. Cosmochim. Acta 50:2143–2146.

    CAS  Google Scholar 

  • Macko SA, Fogel ML, Hare PE, and Hoering TC (1987) Isotopic fractionation of nitrogen and carbon in the synthesis of amino acids by microorganisms. Chem. Geol. (Isotope Geosci. Sect.) 65:79–92.

    Article  CAS  Google Scholar 

  • Mariotti A (1984) Natural 15N abundance measurements and atmospheric nitrogen stan¬dard calibration. Nature 311:251–252.

    Article  CAS  Google Scholar 

  • Minegawa M and Wada E (1984) Stepwise enrichment of 15N along food chains:further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48:1135–1140.

    Google Scholar 

  • Miyake Y and Wada E (1967) The abundance ratio of l5N/l4N in marine environments. Rec. Oceangr. Works Japan 9:37–53.

    Google Scholar 

  • Nier AO (1947) A mass spectrometer for isotope and gas analysis. Rev. Sci. Instrum 18:398–411.

    Article  PubMed  CAS  Google Scholar 

  • Nier AO (1950) A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys. Rev. 77:789–793.

    Article  CAS  Google Scholar 

  • Nier AO and Gulbransen EA (1939) Variations in the relative abundance of the carbon isotopes. J. Am. Chem. Soc. 61:697–698.

    Article  CAS  Google Scholar 

  • O’Leary MH (1980) Carbon isotope fractionation in plants. Phytochemistry 20:553–567.

    Article  Google Scholar 

  • Osmond CB, Allaway WG, Sutton BG, Troughton JH, Queroz O, Luttge N, and Winter K (1973) Carbon isotope discrimination in photosynthesis of CAM plants. Nature 246:41–42.

    Article  CAS  Google Scholar 

  • Park R and Epstein S (1960) Carbon isotope fractionation during photosynthesis. Geo¬chim. Cosmochim. Acta 21:110–126.

    CAS  Google Scholar 

  • Park R and Epstein S (1961) Metabolic fractionation of C13 and C12 in plants. Plant Physiol. 36:133–138.

    Article  PubMed  CAS  Google Scholar 

  • Schoeninger MJ and DeNiro MJ (1984) Nitrogen and carbon isotope composition of bone collagen from marine and terrestrial animals. Geochim. Cosmochim. Acta 48:625–639.

    CAS  Google Scholar 

  • Smith BN and Epstein S (1971) Two categories of 13C/12C ratios for higher plants. Plant Physiol. 47:380–384.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney RE, Liu KK, and Kaplan IR (1978) Oceanic nitrogen isotopes and their used in determining the source of sedimentary nitrogen. In Robinson BW (editor), Stable Isotopes in the Earth Science. Division of Scientific and Industrial Research Bull. 220.

    Google Scholar 

  • Taylor HP (1974) The application of oxygen and hydrogen stable isotope studies to problems of hydothermal alterations and ore deposition. Econ. Geol. 69:843–883.

    Article  CAS  Google Scholar 

  • Thode HG, MacNamara J, and Collins CB (1949) Natural variations in the isotopic content of sulfur and their significance. Gen. J. Res. 27:361–373.

    CAS  Google Scholar 

  • Troughton JH, Mooney HA, Berry JA, and Verity D (1977) Variable carbon isotope ratios of Dudleya species growing in natural environments. Oeologia 30:307–311.

    Article  Google Scholar 

  • Urey H, Brickwedde IG, and Murphy GM (1932) A hydrogen isotope of mass 2 and its concentration. Phys. Res. 39:1–15.

    Google Scholar 

  • Urey HC, Lowenstam HA, Epstein S, and McKinney CR (1951) Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the Southeastern United States. Bull. Geol. Soc. Am. 62:399–416.

    Article  CAS  Google Scholar 

  • Washburn EW and Smith ER (1934) The isotopic fractionation of water by physiological processes. Science 79:188–189.

    Article  PubMed  CAS  Google Scholar 

  • Warshaw RL, Friedman I, Hellen SJ and Frank PA (1970) Hydrogen isotope fractionation of water passing through trees, p. 55. In Hobson GD (editor), Advances in Oceanic Geochemistry. Pergamon Press, Oxford.

    Google Scholar 

  • Wickman FE (1952) Variations in the relative abundance of the carbon isotopes in plants. Geochim. Cosmochim. Acta 2 243–254.

    CAS  Google Scholar 

  • Yapp CJ and Epstein S (1982a) A reexamination of cellulose carbon-bound hydrogen 5D measurements and some factors affecting plant-water D/H relationships. Geochim. Cosmochim. Acta 46:955–965.

    CAS  Google Scholar 

  • Yapp CJ and Epstein S (1982b) Climatic significance of the hydrogen isotope ratios in tree cellulose. Nature 297:636–639.

    Article  CAS  Google Scholar 

  • Yurtsever Y (1975) Worldwide survey of stable isotopes in precipitation. Rep. Sect. Isotope Hydrology, International Atomic Energy Agency, Vienna.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Ehleringer, J.R., Rundel, P.W. (1989). Stable Isotopes:History, Units, and Instrumentation. In: Rundel, P.W., Ehleringer, J.R., Nagy, K.A. (eds) Stable Isotopes in Ecological Research. Ecological Studies, vol 68. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3498-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3498-2_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-8127-6

  • Online ISBN: 978-1-4612-3498-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics