Skip to main content

Using Percolation Theory to Assess Landscape Connectivity and Effects of Habitat Fragmentation

  • Chapter
Applying Landscape Ecology in Biological Conservation

Abstract

Maintaining landscape connectivity has become a management imperative for many agencies (Salwasser 1991; Petit et al. 1995). It is therefore essential that landscapes in danger of becoming disconnected can be identified before they become too fragmented, after which management actions are less likely to be successful and cost-effective. Landscape connectivity is far more complex than is implied by the notion of habitat corridors linking fragments (structural connectivity). For example, if an organism is able to move through the intervening matrix, then isolated habitat patches may be functionally connected, if not structurally connected, by dispersal. Landscape connectivity, therefore, must ultimately be defined by the extent to which different habitat types and other elements of landscape structure facilitate movement among patches (functional connectivity; Taylor et al. 1993; With et al. 1997). The theoretical basis for understanding ecological flows, such as dispersal, gene flow, or the propagation of disturbances (e.g., spread of nonindigenous invasive species) across landscapes has emerged within the discipline of landscape ecology primarily as applications of percolation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andren, H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: a review. Oikos 71:355–366.

    Article  Google Scholar 

  • Bascompte, J., and Solé, R.V. 1996. Habitat fragmentation and extinction thresholds in spatially explicit models. J. Anim. Ecol. 65:465–473.

    Article  Google Scholar 

  • Beier, P. 1996. Metapopulation models, tenacious tracking, and cougar conservation. In Metapopulations and Wildlife Conservation, ed. D.R. McCullough, pp. 293–323. Washington, DC: Island Press.

    Google Scholar 

  • Beier, P., and Noss, R.F. 1998. Do habitat corridors provide connectivity? Conserv. Biol. 12:1241–1252.

    Article  Google Scholar 

  • Boswell, G.P., Britton, N.F., and Franks, N.R. 1998. Habitat fragmentation, percolation theory and the conservation of a keystone species. Proc. R. Soc. London, B 265:1921–1925.

    Article  Google Scholar 

  • Dale, V.H., Pearson, S.M., Offerman, H.L., and O’Neill, R.V. 1994. Relating patterns of land-use change to faunal biodiversity in the central Amazon. Conserv. Biol. 8:1027–1036.

    Article  Google Scholar 

  • Desrochers, A., and Hannon, S.J. 1997. Gap crossing decisions by forest songbirds during the post-fledging period. Conserv. Biol. 11:1204–1210.

    Article  Google Scholar 

  • Doak, D.F., Marino, P.C., and Kareiva, P.M. 1992. Spatial scale mediates the influence of habitat fragmentation on dispersal success: implications for conservation. Theor. Pop. Biol. 41:315–336.

    Article  Google Scholar 

  • Doak, D.F., and Mills, L.S. 1994. A useful role for theory in conservation. Ecology 75:615–626.

    Article  Google Scholar 

  • Fahrig, L. 1997. Relative effects of habitat loss and fragmentation on population extinction. J. Wildl. Manage. 61:603–610.

    Article  Google Scholar 

  • Forman, R.T.T., and Godron, M. 1986. Landscape Ecology. New York: John Wiley and Sons.

    Google Scholar 

  • Gardner, R.H., Milne, B.T., Turner, M.G., and O’Neill, R.V. 1987. Neutral models for the analysis of broad-scale landscape patterns. Landsc. Ecol 1:19–28.

    Article  Google Scholar 

  • Gardner, R.H., and O’Neill, R.V. 1991. Pattern, process, and predictability: the use of neutral models for landscape analysis. In Quantitative Methods in Landscape Ecology, eds. M.G. Turner and R.H. Gardner, pp. 289–307. New York: Springer-Verlag.

    Google Scholar 

  • Green, D.G. 1994. Simulation studies of connectivity and complexity in landscapes and ecosystems. Pac. Conserv. Biol. 3:194–200.

    Google Scholar 

  • Gustafson, E.J., and Gardner, R.H. 1996. The effect of landscape heterogeneity on the probability of patch colonization. Ecology 77:94–107.

    Article  Google Scholar 

  • Hansen, A.J., and Urban, D.L. 1992. Avian response to landscape pattern: the role of species’ life histories. Landsc. Ecol. 7:163–180.

    Article  Google Scholar 

  • Heyer, R.W., Donnelly, M.A., McDiarmid, R.W., Hayek, L.C., and Foster, M.S., eds. 1994. Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians. Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Keitt, T.H., Franklin, A., and Urban, D.L. 1995. Landscape analysis and metapopulation structure. In Recovery Plan for the Mexican Spotted Owl, Volume II, Technical and Supporting Information. Albuquerque, New Mexico: U.S. Department of the Interior, Fish and Wildlife Service.

    Google Scholar 

  • Keitt, T.H., Urban, D.L., and Milne, B.T. 1997. Detecting critical scales in fragmented landscapes. Conserv. Ecol. [online] 1:4. Available from the Internet: www.consecol.org/voll/issl/art4.

    Google Scholar 

  • Kotliar, N.B., and Wiens, J.A. 1990. Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–260.

    Article  Google Scholar 

  • Kunin, WE. 1998. Extrapolating species abundance across spatial scales. Science 281:1513–1515.

    Article  PubMed  CAS  Google Scholar 

  • Lande, R. 1987. Extinction thresholds in demographic models of territorial populations. Am. Nat. 130:624–635.

    Article  Google Scholar 

  • Lande, R. 1988. Demographic models of the Northern Spotted Owl (Strix occidentalis caurind). Oecologia 75:601–607.

    Article  Google Scholar 

  • Lavorel, S., Gardner, R.H., and O’Neill, R.V. 1993. Analysis of patterns in hierarchically structured landscapes. Oikos 67:521–528.

    Article  Google Scholar 

  • Lidicker, W.Z. Jr., and Koenig, WD. 1996. Responses of territorial vertebrates to habitat edges and corridors. In Metapopulations and Wildlife Conservation, ed. D.R. McCullough, pp. 85–109. Washington, DC: Island Press.

    Google Scholar 

  • Metzger, J.-P, and Decamps, H. 1997. The structural connectivity threshold: an hypothesis in conservation biology at the landscape scale. Acta Å’cologia 18:1–12.

    Article  Google Scholar 

  • Mladenoff, D.J., Sickley, T.A., Haight, R.G., and Wydeven, A.P 1995. A regional landscape analysis and prediction of favorable gray wolf habitat in the northern Great Lakes Region. Conserv. Biol. 9:279–294.

    Article  Google Scholar 

  • Moloney, K.A., and Levin, S.A. 1996. The effects of disturbance architecture on landscape-level population dynamics. Ecology 77:375–394.

    Article  Google Scholar 

  • Noss, R.F. 1991. Landscape connectivity: different functions at different scales. In Landscape Linkages and Biodiversity, ed. W Hudson, pp. 23–39. Washington, DC: Island Press.

    Google Scholar 

  • O’Neill, R.V, Gardner, R.H., and Turner, M.G. 1992. A hierarchical neutral model for landscape analysis. Landsc. Ecol. 7:55–61.

    Article  Google Scholar 

  • O’Neill, R.V., Milne, B.T., Turner, M.G., and Gardner, R.H. 1988. Resource utilization scales and landscape pattern. Landsc. Ecol. 2:63–69.

    Article  Google Scholar 

  • Palmer, M.W. 1992. The coexistence of species in fractal landscapes. Am. Nat. 139:375–397.

    Article  Google Scholar 

  • Pearson, S.M., and Gardner, R.H. 1998. Neutral models: useful tools for understanding landscape patterns. In Wildlife and Landscape Ecology: Effects of Pattern and Scale, ed. J.A. Bissonette, pp. 215–230. New York: Springer-Verlag.

    Google Scholar 

  • Pearson, S.M., Turner, M.G., Gardner, R.H., and O’Neill, R.V. 1996. An organism-based perspective of habitat fragmentation. In Biodiversity in Managed Landscapes, eds. R.C. Szaro and D.W. Johnston, pp. 77–95. Oxford, United Kingdom: Oxford University Press.

    Google Scholar 

  • Petit, L.J., Petit, D.R., and Martin, T.E. 1995. Landscape-level management of migratory birds: looking past the trees to see the forest. Wildl. Soc. Bull. 23:420–429.

    Google Scholar 

  • Plotnick, R.E., and Gardner, R.H. 1993. Lattices and landscapes. Lect. Math. Life Sci. 23:129–157.

    Google Scholar 

  • Plotnick, R.E., Gardner, R.H., and O’Neill, R.V. 1993. Lacunarity indices as measures of landscape texture. Landsc. Ecol. 8:201–211.

    Article  Google Scholar 

  • Pulliam, H.R., and Dunning, J.B., Jr. 1994. Demographic processes: population dynamics on heterogeneous landscapes. In Principles of Conservation Biology, eds. G.K. Meffe and CR. Carroll, pp. 179–205. Sunderland, Massachusetts: Sinauer Associates.

    Google Scholar 

  • Pulliam, H.R., and Dunning, J.B., Jr. 1997. Demographic processes: population dynamics on heterogeneous landscapes. In Principles of Conservation Biology, Second Edition, eds. G.K. Meffe and C.R. Carroll, pp. 203–232. Sunderland, Massachusetts: Sinauer Associates.

    Google Scholar 

  • Pulliam, H.R., Dunning, J.B. Jr., and Liu, J. 1992. Population dynamics in complex landscapes: a case study. Ecol. Appl. 2:165–177.

    Article  Google Scholar 

  • Rail, J.-E, Darveau, M., Desrochers, A., and Huot, J. 1997. Territorial responses of boreal forest birds to habitat gaps. Condor 99:976–980.

    Article  Google Scholar 

  • Russ, J.C. 1994. Fractal Surfaces. New York: Plenum Press.

    Google Scholar 

  • Salwasser, H. 1991. New perspectives for sustaining diversity in U.S. national forest ecosystems. Conserv. Biol. 5:567–569.

    Article  Google Scholar 

  • Saupe, D. 1988. Algorithms for random fractals. In The Science of Fractal Images, eds. H.-O. Petigen and D. Saupe, pp. 71–113. New York: Springer.

    Chapter  Google Scholar 

  • Schumaker, N. 1996. Using landscape indices to predict habitat connectivity. Ecology 77:1210–1225.

    Article  Google Scholar 

  • Stauffer, D., and Aharony, A. 1991. Introduction to Percolation Theory, Second Edition. London, United Kingdom: Taylor and Francis.

    Google Scholar 

  • St. Clair, C.C., Bélisle, M., Desrochers, A., and Hannon, S. 1998. Winter responses of forest birds to habitat corridors and gaps. Conserv. Ecol. [online] 2:13. Available from the Internet: www.consecol.org/vol2/iss2/art13.

    Google Scholar 

  • Taylor, P.D., Fahrig, L., Henein, K., and Merriam, G. 1993. Connectivity is a vital element of landscape structure. Oikos 68:571–573.

    Article  Google Scholar 

  • Wiens, J.A., and Milne, B.T. 1989. Scaling of ‘landscapes’ in landscape ecology, or, landscape ecology from a beetle’s perspective. Landsc. Ecol. 3:87–96.

    Article  Google Scholar 

  • Wiens, J.A., Schooley, R.L., and Weeks, R.D., Jr., 1997. Patchy landscapes and animal movements: do beetles percolate? Oikos 78:257–264.

    Article  Google Scholar 

  • With, K.A. 1997a. The application of neutral landscape models in conservation biology. Conserv. Biol. 11:1069–1080.

    Article  Google Scholar 

  • With, K.A. 1997b. The theory of conservation biology. Conserv. Biol. 11:1436–1440.

    Article  Google Scholar 

  • With, K.A. 1999. Is landscape connectivity necessary and sufficient for wildlife management? In Forest Fragmentation: Wildlife and Management Implications, eds. J.A. Rochelle, L.L. Lehmann, and J. Wisniewski, pp. 97–115. Leiden, The Netherlands: Brill Academic Publishers.

    Google Scholar 

  • With, K.A., Cadaret, S.J., and Davis, C. 1999. Movement responses to patch structure in experimental fractal landscapes. Ecology 80:1340–1353.

    Article  Google Scholar 

  • With, K.A., and Crist, T.O. 1995. Critical thresholds in species’ responses to landscape structure. Ecology 76:2446–2459.

    Article  Google Scholar 

  • With, K.A., Gardner, R.H., and M.G. Turner. 1997. Landscape connectivity and population distributions in heterogeneous environments. Oikos 78:151–169.

    Article  Google Scholar 

  • With, K.A., and King, A.W. 1997. The use and misuse of neutral landscape models in ecology. Oikos 79:219–229.

    Article  Google Scholar 

  • With, K.A., and King, A.W. 1999a. Dispersal success on fractal landscapes: a consequence of lacunarity thresholds. Landsc. Ecol 14:73–82.

    Article  Google Scholar 

  • With, K.A., and King, A.W. 1999b. Extinction thresholds for species in fractal landscapes. Conserv. Biol 13:314–326.

    Article  Google Scholar 

  • Zallen, R. 1983. The Physics of Amorphous Solids. New York: John Wiley and Sons.

    Book  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

With, K.A. (2002). Using Percolation Theory to Assess Landscape Connectivity and Effects of Habitat Fragmentation. In: Gutzwiller, K.J. (eds) Applying Landscape Ecology in Biological Conservation. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-0059-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0059-5_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95322-9

  • Online ISBN: 978-1-4613-0059-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics