Skip to main content

Part of the book series: Ellis Horwood Series in Food Science and Technology ((EHSFST))

  • 526 Accesses

Abstract

Combined gas chromatography—mass spectrometry (GC—MS) is probably the most comprehensive instrumental analytical technique available to the scientist in food analysis at present. The technique is well established in food science, and a predominant area of application is in food safety, where reliable information on food contaminants, e.g. pesticides, mycotoxins and veterinary drug residues, is of vital consequence. Information to be obtained can be both the unequivocal identification or confirmation of the contaminant and the quantification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arsenault, G. P. (1979). Chemical ionization mass spectrometry. In Biochemical Applications of Mass Spectrometry, Waller, G. R. (ed.), Wiley-Interscience, New York, p. 817.

    Google Scholar 

  • Beynon, J. H. and Brenton, A. G. (1982). An Introduction to Mass Spectrometry. University of Wales Press, Cardiff, p. 30.

    Google Scholar 

  • Brodbelt, J.S. and Cooks, R. G. (1988). Ion trap tandem mass spectrometry, Spectra —A Finnigan MAT Publication, 11, 33.

    Google Scholar 

  • Brumley, W. C. and Sphon, J. A. (1987). Application of negative ion chemical ionization. In Applications of Mass Spectrometry in Food Science, Gilbert, J. (ed.), Elsevier Applied Science, New York, p. 141.

    Google Scholar 

  • Cramers, C. A., Scherpenzeel, G. J. and Leclercq, P. A. (1981). Increased speed of analysis in direct coupled chromatography–mass spectrometry systems, J. Chromatogr., 203, 207–216.

    Article  Google Scholar 

  • Cronin, D. A. and Caplan, P. J. (1987). Application of GC/MS to identification of flavour compounds in food. In Applications of Mass Spectrometry in Food Science, Gilbert, J. (ed.), Elsevier Applied Science, New York, p. 1.

    Google Scholar 

  • Dougherty, R. C. (1981). Negative chemical ionization mass spectrometry, Anal. Chem. 53, 625A.

    Google Scholar 

  • Duncan, M. W., Smythe, G. A., Nicholson, M.V. and Clezy, P. S. (1984). Comparison of high-performance liquid chromatography with electrochemical detection and gas chromatography-mass fragmentography for the assay of salsolinol, dopamine and dopamine metabolites in food and beverage samples, J. Chromatogr., 336, 199–209.

    Article  Google Scholar 

  • Dupuy, H. P., Bailey, M. E., St. Angelo, A. J., Vercellotti, F. R. and Legendre, M. G. (1987). Instrumental analyses of volatiles related to warmed-over flavor of cookèd meats. In Warmed-Over Flavor of Meat, St. Angelo, A. J. and Bailey, M. E., (eds.), Academic Press, Orlando, p. 165.

    Google Scholar 

  • Feser, K. and Kögler, W. (1979). The quadrupole mass filter for GC/MS applications. J., Chromatogr. Sci., 13, 57.

    Google Scholar 

  • Flath, R. A. (1981). Identification in flavor research. In Flavor Research - Recent Advances, Teranishi, R., Flath, R. A. and Sugisawa, H. (eds.), Marcel Dekker, New York, p. 83.

    Google Scholar 

  • Friedli, F. (1981). Fused silica capillary GC/MS coupling: a new, innovative approach, J. HRC & CC, 4, 495–499.

    Article  Google Scholar 

  • Fürst, P. (1988). Determination of the PCB-substitute Uglic in fish with the ion trap detector, Spectra–A Finnigan MAT Publication, 11(2), 26–29.

    Google Scholar 

  • Giang, B. Y. (1984). Improved capillary GC/MS interface, J. HRC & CC, 7, 137–139.

    Article  Google Scholar 

  • Gilbert, J. (1984). Confirmation and quantification of trace organic food contaminants by mass spectrometry-selected ion monitoring. In Analysis of Food Contaminants, Gilbert, J. (ed.), Elsevier Applied Science, New York, p. 265.

    Google Scholar 

  • Gilbert, J. (1987). Application of quantitative mass spectrometry in food science. In Applications of Mass Spectrometry in Food Science, Gilbert, J. (ed.), Elsevier Applied Science, New York, p. 73.

    Google Scholar 

  • Grayson, M. A. (1986). The mass spectrometer as a detector for gas chromatography, J. Chromatogr. Sci., 24, 529–542.

    Google Scholar 

  • Gudzinowicz, B. J., Gudzinowicz, M. J. and Martin, H. F. (1977). Fundamentals of Integrated GC-MS. Parts II and III, Marcel Dekker, New York.

    Google Scholar 

  • Harrison, A. G. (1983). Chemical Ionization Mass Spectrometry, CRC Press, Boca Raton, FL, p. 63.

    Google Scholar 

  • Hatch, F. W. and Parrish, M. E. (1978). Vacuum gas chromatography using short glass-capillary columns combined with mass spectrometry, Anal. Chem., 50, 1164–1168.

    Article  Google Scholar 

  • Henneberg, D. and Weimann, B. (1984). Search for identical and similar compounds in mass spectral data bases, Spectra–A Finnigan MAT Publication, 10(1), 11–14.

    Google Scholar 

  • Henneberg, D., Henrichs, U. and Schomburg, G. (1975). Open split connection of glass capillary columns to mass spectrometers, Chromatographia, 8, 449–451.

    Article  Google Scholar 

  • Horman, I. (1984). Mass spectrometry. In Analysis of Foods and Beverages: Modern Techniques, Charalambous, G. (Ed.), Academic Press, Orlando, p. 141

    Google Scholar 

  • Hübschmann, H. J. and Katzlinger, H. (1985). Bestimmung von Diethylenglycol in Wein mit dem Ion Trap Detector, Lebenss. Biotechn., 4, 148.

    Google Scholar 

  • Hübschmann, H. J. and Schubert, R. (1986). Ion trap detector: the techniques and its application. In Progress in Essential Oil Research, Brunke, E.-J. (ed.), Walter de Gruyter, Berlin, p. 643.

    Google Scholar 

  • Hunt, D. F., Stafford, Jr., G. C., Crow, F. W. and Russel, J. W. (1976). Pulsed positive negative ion chemical ionization mass spectrometry, Anal. Chem., 48, 2098–2105.

    Article  Google Scholar 

  • Koller, D. W. and Tressl, G. (1980). Simple GC/MS interface with transfer-line of fused silica for open or direct coupling, J. HRC & CC, 3, 359.

    Article  Google Scholar 

  • Larick, D. K., Hedrick, H. B., Bailey, M. E., Williams, J. W., Hancock, D. L., Garner, G. B. and Morrow, R. E. (1987). Flavor constituents of beef as influenced by forage-and grain-feeding, J. Food Sci., 52(2), 245–251.

    Google Scholar 

  • Ligon, Jr., W. V. (1979). Molecular Analysis by Mass Spectrometry, Science, 205, 151–159.

    Article  Google Scholar 

  • Louris, J. N., Cooks, R. G., Syka, J. E. P., Kelley, P. E., Stafford, Jr., G. C. and Todd, J. F. J. (1987). Instrumentation, applications and energy deposition in quadrupole ion-trap tandem mass spectrometry, Anal. Chem., 59, 1677.

    Article  Google Scholar 

  • McFadden, W. H. (1973). Techniques of Combined Gas Chromatography/Mass Spectrometry: Applications in Organic Analysis. Wiley-Interscience, New York.

    Google Scholar 

  • McFadden, W. H. (1979). Interfacing chromatography and mass spectrometry, J. Chromatogr. Sci., 17, 2–16.

    Google Scholar 

  • McLafferty, F. W. and Venkataraghavan, R. (1979). Computer techniques for mass spectral identification, J.Chromatogr. Sci., 17, 24–29.

    Google Scholar 

  • Merritt, Jr., C. and Robertson, D. H. (1982). Techniques of analysis of flavours, gas chromatography and mass spectrometry. In Food Flavours, Part A. Introduction, Morton, I. D. and MacLeod, A. J. (eds.), Elsevier Scientific, New York, p. 49.

    Google Scholar 

  • Milberg, R. M. and Cook, Jr., J. C. (1979). Design considerations of MS sources: EI, CI, FI, FD and API, J. Chromatogr. Sci., 17, 17–23.

    Google Scholar 

  • Munson, M. S. B. and Field, F. H. (1966). Chemical ionization mass spectrometry. I. General introduction, J. Am. Chem. Soc., 88, 2621.

    Article  Google Scholar 

  • Parliment, T. H. (1987). Sample analysis in flavor and fragrance research, American Laboratory, 19(1), 51–57.

    Google Scholar 

  • Paul, W. and Steinwedel, H. (1953). Ein Neues Massenspektrometer Ohne Magnetfeld. Z. Naturforschung, 8a, 448.

    Google Scholar 

  • Peltonen, K., Lakkisto, U.-M. and Rosenberg, C. (1988). Use of a deactivated capillary between the GC column and the mass spectrometer to facilitate column changing, LC-GC, 6(6), 524.

    Google Scholar 

  • Roboz, J. (1986). Gas-liquid chromatography/mass spectrometry. In Quantitative Analysis of Catecholamines and Related Compounds, Krstulovic, A. M. (ed.), Ellis Horwood, Chichester (UK), p. 51–55.

    Google Scholar 

  • Rosen, R. T., Hartman, T. G. and Lech, J. (1988). Why not purchase a high resolution magnetic mass spectrometer?, Mass Spec. Source, XI (3), 13.

    Google Scholar 

  • Schomburg, G., Husmann, H., Podmaniczky, L., Weeke, F. and Rapp, A. (1984). Coupled gas chromatographic methods for separation identification and quantitative analysis of complex mixtures: MDGC, GC-MS, GC-IR, LC-GC. In Analysis of Volatiles: Methods and Applications, Schreier, P. (ed.), Walter de Gruyter, Berlin, p. 121.

    Chapter  Google Scholar 

  • Stan, H.-J. (1984). Contribution of mass spectrometry to food safety. In Chromato-graphy and Mass Spectrometry in Nutrition Science and Safety, Frigerio, A. and Milon, H. (eds.), Elsevier Science, Amsterdam, p. 91.

    Google Scholar 

  • Stan, H.-J. and Abraham, B. (1978). All-glass open-split interface for gas chromatography—mass spectrometry, Anal. Chem., 50(14), 2161–2164.

    Article  Google Scholar 

  • Suzuki, J. and Bailey, M. E. (1985). Direct sampling capillary GLC analysis of flavor volatiles from ovine fat, J. Agric. Food. Chem., 33, 343–347.

    Article  Google Scholar 

  • Vangaever, F., Sandra, P. and Verzele, M. (1979). Influence of the vacuum on the separation efficiency in coupled (GC)2-MS, Chromatographia, 12, 153–154.

    Article  Google Scholar 

  • Wetzel, E., Kuster, T. and Curtius, H.-C. (1982). A split system applicable as a gas chromatographic—mass spectrometric interface and as effluent splitter for specific gas chromatographic detectors, J. Chromatogr., 239, 107–114.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Ellis Horwood Limited

About this chapter

Cite this chapter

Gerhardt, K.O. (1990). Gas chromatography—mass spectrometry. In: Gordon, M.H. (eds) Principles and Applications of Gas Chromatography in Food Analysis. Ellis Horwood Series in Food Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0681-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0681-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8024-8

  • Online ISBN: 978-1-4613-0681-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics