Skip to main content

Nanoduct Fluid Flow

  • Chapter
  • First Online:
Vortex, Molecular Spin and Nanovorticity

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 725 Accesses

Abstract

Nanoducts are unique in that fluid moving through them has intense vorticity, or molecular spin. In such regions of fluid flow, the molecular theory of fluids must be used to model the flow region and the physical properties of the fluid. Such properties change significantly in the presence of intense vorticity. These topics have been dealt with in Chap. 3 under the heading of the Nano-boundary Layer, using Waldman’s kinetic theory for a fluid of rotating and translating molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Israelachvili, J.: Intermolecular and Surface Forces. Academic, New York (1992)

    Google Scholar 

  2. Bird, G.A.: Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon, Oxford (1994)

    Google Scholar 

  3. Behrens, S.H., Grier, D.G.: The charge of glass and silica surfaces. J. Chem. Phys. 115, 6716 (2001)

    Article  ADS  Google Scholar 

  4. Priez, N., Troian, S.M.: Influence of wall roughness on slip behaviour. J. Fluid Mech. 554, 25–46 (2006)

    Article  ADS  Google Scholar 

  5. Huang, P., Breuer, K.S.: Direct measurement of slip length in electrolyte solutions. Phys. Fluids 19, 028104 (2007)

    Article  ADS  Google Scholar 

  6. Thompson, P., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)

    Article  ADS  Google Scholar 

  7. Matthews, M.T., Hill, J.M.: Nano boundary layer equation with non-linear navier boundary condition. J. Math. Anal. Appl. 333, 381 (2006)

    Article  MathSciNet  Google Scholar 

  8. Gubskaya, A.V., Kusalik, P.G.: The total molecular dipole moment for liquid water. J. Chem. Phys. 117, 5290–5302 (2002)

    Article  ADS  Google Scholar 

  9. Hummer, G., Rasaiah, J.C., Noworyta, J.P.: Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001)

    Article  ADS  Google Scholar 

  10. Mashl, R.J.: Anomalously immobilized water: a new phase induced by confinement in nanotubes. Nano Lett. 3, 589–592 (2003)

    Article  ADS  Google Scholar 

  11. Waghe, A.J.C., Rasaiah, J.C., Hummer, G.: Filling and emptying kinetics of carbon nanotubers in water. J. Chem. Phys. 117, 10789–10795 (2002)

    Article  ADS  Google Scholar 

  12. Gordillo, M.C., Marti, J.: Hydrogen bond structure of liquid water confined in nanotubes. Chem. Phys. Lett. 329, 341–345 (2000)

    Article  ADS  Google Scholar 

  13. Yen, T.H., Soong, C.Y., Tzeng, P.Y.: Hybrid molecular dynamics continuum simulation for nano/mesoscale channel flows. Microfluid. Nanofluidics 3, 665–675 (2007)

    Article  Google Scholar 

  14. Hansen, J.S., Ottesen, J.T.: Molecular simulation of oscillatory flows in microfluidic channels. Microfluid. Nanofluidics 2, 301 (2006)

    Article  Google Scholar 

  15. Bruus, H.: Theoretical Microfluidics. Oxford University Press, New York (2008)

    Google Scholar 

  16. Travis, K.P., Gubbins, K.E.: Poiseuille flow in narrow slit pores. J. Chem. Phys. 112, 1984–1994 (2000)

    Article  ADS  Google Scholar 

  17. Hansen, J.S., et al.: Local linear viscoelasticity of confined fluids. J. Chem. Phys. 126, 144706 (2007)

    Article  ADS  Google Scholar 

  18. de Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Dover, Mineola (1984)

    Google Scholar 

  19. Hansen, J.S., Daivis, P.J., Dodd, B.D.: Molecular spin in nano-confined fluidic flows. Microfluid. Nanofluidics 6, 785–795 (2009)

    Article  Google Scholar 

  20. Heinz, W.F., Hoh, J.H.: Spatially resolved force microscopy of biological surfaces using the AFM. Trends Biotechnol. 17, 143–150 (1999)

    Article  Google Scholar 

  21. Derjaguin, B.V., et al.: Investigations of the forces of interactions of surfaces in different media and the problem of colloid stability. Discuss. Faraday Soc. 18, 24–41 (1954)

    Article  Google Scholar 

  22. Raviv, U., Klein, J.: Fluidity of bound hydration layers. Science 297, 1540–1543 (2002)

    Article  ADS  Google Scholar 

  23. Raviv, U., et al.: Lubrication by charged polymers. Nature 425, 1540–1543 (2003)

    Article  Google Scholar 

  24. Wanless, E.J., Christenson, H.K.: Interaction between surfaces in ethanol. J. Chem. Phys. 101, 4260–4267 (1994)

    Article  ADS  Google Scholar 

  25. Mugele, F., Salmeron, M.: Frictional properties of thin chain alcohol films. J. Chem. Phys. 114, 1831–1836 (2001)

    Article  ADS  Google Scholar 

  26. Israelachvili, J., et al.: Liquid dynamics in molecularly thin film. J. Phys. Condens. Matter 2, SA89–SA98 (1990)

    Article  ADS  Google Scholar 

  27. Israelachvili, J.N., et al.: Dynamic properties of molecularly thin films. Science 240, 189–191 (1988)

    Article  ADS  Google Scholar 

  28. Vinogradova, O.I.: Slippage of water over hydrophobic surfaces. Int. J. Miner. Process. 56, 31–60 (1999)

    Article  Google Scholar 

  29. Froberg, J.C., et al.: Surface force and measuring techniques. Int. J. Miner. Process. 56, 1–30 (1999)

    Article  Google Scholar 

  30. Schoen, M., et al.: Shear forces in molecularly thin films. Science 245, 1223–1225 (1989)

    Article  ADS  Google Scholar 

  31. Succi, S.: The Lattice Boltzman Equation. Oxford University Press, Oxford (2001)

    Google Scholar 

  32. Tas, N.R., et al.: Capillarity induced negative pressure of water plugs in nanochannels. Nano Lett. 3(11), 1537–1540 (2003)

    Article  ADS  Google Scholar 

  33. Imre, A., Martinas, K., Rebelo, L.P.N.: Thermodynamics of negative pressures in liquids. J. Non-equilib.Thermodyn. 23(4), 351–375 (1998)

    Article  ADS  MATH  Google Scholar 

  34. Mercury, L., et al.: Thermodynamic properties of solutions in metastable systems. Geochim. Cosmochim. Acta. 67(10), 1769–1785 (2003)

    Article  ADS  Google Scholar 

  35. Zhu, Y., Granick, S.: Rate-dependent slip of newtonian liquid at smooth surfaces. Phys. Rev. Lett. 87(9), 096105 (2001)

    Article  ADS  Google Scholar 

  36. de Gennes, P.-G.: On fluid/wall slippage. Langmuir 18, 3413–3414 (2002)

    Article  Google Scholar 

  37. Kalra, A., Garda, S., Hummer, G.: Osmotic water transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. U.S.A. 100(18), 13770–13773 (2003)

    Article  Google Scholar 

  38. Bakajin, O.B., et al.: Electrodynamic stretching of DNA in confined environments. Phys. Rev. Lett. 80(12), 2737–2740 (1998)

    Article  ADS  Google Scholar 

  39. Bao, G.: Mechanics of biomolecules. J. Mech. Phys. Solids 50(11), 2237–2274 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Lykema, J.: Surface conduction. J. Phys. Condens. Matter 13(21), 5027–5034 (2001)

    Article  ADS  Google Scholar 

  41. Stein, D.: Surface-charged-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 93(3), 035901 (2004)

    Article  ADS  Google Scholar 

  42. Fievet, P., et al.: Evaluation of 3 methods for the characterization of membrane-solution interface. J. Membr. Sci. 168(1–2), 87–100 (2000)

    Article  Google Scholar 

  43. Sun, D.D.: The influence of the fixed negative charges on mechanical and electrical behaviours in articular cartilage under unconfined compression. J. Biomech. Eng. 126(1), 6–16 (2004)

    Article  Google Scholar 

  44. Bethansen, L., et al.: Plasma disappearance of glycated and non-glycated albumin in diabetes mellitus. Diabetologia 36(4), 361–363 (1993)

    Article  Google Scholar 

  45. Ku, J.R., Stroeve, P.: Protein diffusion in charged nanotubes: on-off behaviour of molecular transport. Langmuir 20(5), 2030–2032 (2004)

    Article  Google Scholar 

  46. Pu, Q.S., et al.: Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 4(6), 1099–1103 (2004)

    Article  ADS  Google Scholar 

  47. Probstein, R.F.: Physicochemical Hydro-dynamics: An Introduction, 2nd edn. Wiley, New York (1994)

    Book  Google Scholar 

  48. Strick, T., et al.: Twisting and stretching single DNA molecules. Prog. Biophys. Mol. Biol. 74(1–2), 115–140 (2000)

    Article  Google Scholar 

  49. Muthukumar, M., Baumgartner, A.: Effects of entropic barriers on polymer dynamics. Macromolecules 22, 1937–1946 (1989)

    Article  ADS  Google Scholar 

  50. Han, J., et al.: Entropic trapping and escape of long DNA molecules. Phys. Rev. Lett. 83(8), 1688–1691 (1999)

    Article  ADS  Google Scholar 

  51. Tegenfeldt, J.O.: Stretching DNA in nanochannels. Biophys. J. 86(1, pt 2), 596A (2004)

    Google Scholar 

  52. Tajkhorshid, E.: Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296(5567), 525–530 (2002)

    Article  ADS  Google Scholar 

  53. Iler, R.K.: The Chemistry of Silica. Wiley, New York (1979)

    Google Scholar 

  54. Schoch, R.B., Han, J., Renaud, P.: Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Percival McCormack .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Percival McCormack

About this chapter

Cite this chapter

McCormack, P. (2012). Nanoduct Fluid Flow. In: Vortex, Molecular Spin and Nanovorticity. SpringerBriefs in Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0257-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0257-2_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0256-5

  • Online ISBN: 978-1-4614-0257-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics