Skip to main content

Knowledge Transformation Between Secondary School and University Mathematics

  • Chapter
  • First Online:
Transformation - A Fundamental Idea of Mathematics Education

Abstract

The transition between school- and university-level mathematics is a challenging task for students, which includes the need to change their views of mathematics. In particular, this task encompasses coping with the discrepancy between a mostly concrete and application-oriented school perspective on the subject and the abstract and comprehensive university perspective. Preservice teachers are especially concerned as they might see their university studies more or less as an interruption between the two ways of working at school, namely as a student and as a teacher. In a small study, we addressed the question how teacher students change their view on mathematical definitions during the first months at the university. We will present results and discuss them with respect to the transformation of knowledge.

Die Mathematiker sind eine Art Franzosen: Redet man zu ihnen, so übersetzen sie es in ihre Sprache, und dann ist es alsobald ganz etwas anders. (Mathematicians are like a sort of Frenchmen: if you talk to them, they translate it into their own language, and then it is immediately something quite different). Johann Wolfgang von Goethe (1749–1832).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Elementary Mathematics from an Advanced Standpoint: Arithmetic, Algebra, Analysis.

  2. 2.

    Baumert et al. (2010) used, e.g., the task “Is \( 2^{1024}-1 \) a prime number?” in their study. Solving this task presupposes the concept of prime number (approx. grade 6 in German curricula) and the formula \( x^{2n}- 1 = (x^n + 1)(x^n - 1) \) (approx. grade 7 in German curricula).

  3. 3.

    German preservice teacher students who will teach at the upper secondary level are supposed to choose two major subjects during their BA and MA studies as well as elementary courses in pedagogy and psychology.

  4. 4.

    This means a course at a level somewhat below Walter Rudin’s “Principles of Mathematical Analysis” (1976).

  5. 5.

    The notation “y ≤ Y” was introduced in the course to express that a real number y is a lower bound of a set Y of reals.

  6. 6.

    A real number s is the supremum or least upper bound of a set X of reals, if it is the smallest real number s such that \(X\leq s.\).

References

  • Baumert, J., & Kunter, M. (2006). Stichwort: Professionelle Kompetenz von Lehrkräften. Zeitschrift für Erziehungswissenschaft, 9, 520469–520.

    Article  Google Scholar 

  • Baumert, J., & Kunter, M. (2011). Das mathematikspezifische Wissen von Lehrkräften, kognitive Aktivierung im Unterricht und Lernfortschritte von Schülerinnen und Schülern. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Professionelle Kompetenz von Lehrkräften: Ergebnisse des Forschungsprogramms COACTIV (S. 192163–192). Münster: Waxmann.

    Google Scholar 

  • Baumert, J., Lehmann, R., Lehrke, M., Schmitz, B., Clausen, M., Hosenfeld, I., & Köller, O. (1997). TIMSS: mathematisch-naturwissenschaftlicher Unterricht im internationalen Vergleich. Deskriptive Befunde. Opladen: Budrich + Leske.

    Google Scholar 

  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Klusmann, U., Krauss, S., Neubrand, M., & Tsai, Y. M. (2010). Teachers mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47, 180133–180.

    Article  Google Scholar 

  • Biermann, H. R., & Jahnke, H. N. (2013). How 18th century mathematics was transformed into 19th century school curricula. (this volume).

    Google Scholar 

  • Blömeke S., Kaiser G., & Lehmann R. (Eds.). (2010). TEDS-M 2008. Professionelle Kompetenz und Lerngelegenheiten angehender Mathematiklehrkräfte für die Sekundarstufe I im internationalen Vergleich. Münster: Waxmann.

    Google Scholar 

  • Cappell, J., Sträßer, R., & von Aufschnaiter, C. (2010). Diagnose- und Förderkompetenzen zukünftiger Lehrkräfte der Naturwissenschaften und Mathematik. In A. Lindmeier, & S. Ufer (Eds.), Beiträge zum Mathematikunterricht (S. 220217–220). Münster: WTM.

    Google Scholar 

  • Czerwenka, K., & Nölle, K. (2011). Forschung zur ersten Phase der Lehrerbildung. In E. Terhart, H. Bennewitz, & M. Rothland (Eds.), Handbuch der Forschung zum Lehrerberuf (S. 380362–380). Münster: Waxmann.

    Google Scholar 

  • Common Core State Initiative (2010). Common core state standards for mathematics. http://www.corestandards.org/. Accessed 23 Nov 2011.

  • Darling-Hammond, L. (2000). How teacher education matters. Journal of Teacher Education, 51, 173166–173.

    Article  Google Scholar 

  • Freudenthal, H. (1973). Mathematics as an educational task. Dordrecht: Reidel.

    Google Scholar 

  • Hadamard, J. (1949). The psychology of invention in the mathematical field. Princeton: Princeton University Press.

    Google Scholar 

  • Heinze, A., & Reiss, K. (2009). Developing argumentation and proof competencies in the mathematics classroom. In D. A. Stylianou, M. L. Blanton, & E. J. Knuth (Eds.), Teaching and learning proof across the grades: A K – 16 Perspective (pp. 203191–203). New York: Routledge.

    Google Scholar 

  • Kaiser, G., & Buchholtz, N. (2013). Overcoming the gap between university and school mathematics. The impact of an innovative programme in mathematics teacher education at the Justus-Liebig-University in Giessen. (this volume).

    Google Scholar 

  • Kessler, S. (2011). Das mathematische Fachwissen von gymnasialen Mathematiklehrkräften – Eine empirische Analyse des Konstrukts im Zusammenhang mit Personen- und Unterrichtsvariablen. Dissertation. Technische Universität München, TUM School of Education. http://mediatum.ub.tum.de/node?id=1071144.

  • Klein, F. (1925). Elementarmathematik vom höheren Standpunkte aus, Teil II: Geometrie. Berlin: Springer. English translation: Klein, F. (2004) Elementary Mathematics from an Advanced Standpoint: Geometry. Mineola: Dover.

    Google Scholar 

  • Klein, F. (1933). Elementarmathematik vom höheren Standpunkte aus, Teil I: Arithmetik, Algebra, Analysis. 4th edition. Berlin: Springer. English translation: Klein, F. (2007) Elementary Mathematics from an Advanced Standpoint: Arithmetic, Algebra, Analysis. New York: Cosimo Classics.

    Google Scholar 

  • Klieme, E., Reiss, K., & Heinze, A. (2003). Geometrical competence and understanding of proof. A study based on TIMSS items. In F. L. Lin & J. Guo (Eds.), Proceedings of the International Conference on Science and Mathematics Learning 2003 (pp. 8060–80). Taipei: National Taiwan Normal University.

    Google Scholar 

  • Kultusministerkonferenz. (2003). Bildungsstandards im Fach Mathematik für den mittleren Schulabschluss. Bonn: KMK.

    Google Scholar 

  • National Council of Teachers of Mathematics (2000). Principles and standards for school mathematics. Reston: National Council of Teachers of Mathematics.

    Google Scholar 

  • Reiss, K., & Törner, G. (2007). Problem solving in the mathematics classroom: The German perspective. ZDM. The International Journal on Mathematics Education, 39, 441431–441.

    Article  Google Scholar 

  • Reiss, K., Prenzel, M., & Seidel, T. (in prep.). Ein Modell für die Lehramtsausbildung: Die TUM School of Education. In D. Frey, H. Mandl, L. V. Rosenstiel, & K. Schneewind (Eds.), Universitäre Bildung: Vom Stoffspeicher zur Persönlichkeitsentwicklung.

    Google Scholar 

  • Rudin, W. (1976). Principles of Mathematical Analysis. New York: McGraw-Hill.

    Google Scholar 

  • Shulman, L. (1986). Paradigms and research programs in the study of teaching: a contemporary perspective. In M. Wittrock (Ed.), Handbook of Research on Teaching (pp. 363–36). New York: Macmillan.

    Google Scholar 

  • Shulman, L. S. (1987). Knowledge and teaching: foundations of the new reform. Harvard Educational Review, 57(1), 221–22.

    Google Scholar 

  • Wertheimer, M. (1945). Productive thinking. New York: Harper.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Deiser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Deiser, O., Reiss, K. (2014). Knowledge Transformation Between Secondary School and University Mathematics. In: Rezat, S., Hattermann, M., Peter-Koop, A. (eds) Transformation - A Fundamental Idea of Mathematics Education. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3489-4_3

Download citation

Publish with us

Policies and ethics