Skip to main content

PET/CT for Interventional Use

  • Chapter
  • First Online:
Intraoperative Imaging and Image-Guided Therapy

Abstract

We believe that image-guided therapy is slowly but surely moving into a new phase: molecular imaging (MI)-guided therapy. MI-guided surgeries and interventions require validated MI imaging agents, and the presence of a PET/CT system in the AMIGO suite gives us a unique platform for in vivo human validation of these agents, at present primarily for brain and prostate cancer but eventually for other malignancies. Multiple pathological samples from open brain surgery or prostate biopsies will be acquired and compared to PET data from corresponding image locations. Very precise mapping of sampling sites to image locations will be possible. This capability will make possible the much-needed translational steps for the validation of new tumor localizing and characterizing MI agents. Accurately defined tumor extent can guide the radiologist or interventional radiologist to achieve full or maximal resection or ablation. Using this technology, physicians can localize and target viable tumor tissue before the procedures and ensure the complete removal or destruction of tumors by visualizing any residual cancer tissue before concluding the procedure. The combined use of MRI and CT with PET enables clinicians to integrate anatomical, functional, and metabolic information to guide their decision-making during tumor resections and percutaneous thermal ablations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DiMaio SP, Archip N, Hata N, et al. Image-guided neurosurgery at Brigham and Women’s Hospital – the integration of imaging, navigation, and interventional devices. IEEE Eng Med Biol Mag. 2006;25(5):67–73.

    Article  PubMed  Google Scholar 

  2. McDannold N, Park EJ, Mei CS, Zadicario E, Jolesz F. Evaluation of three-dimensional temperature distributions produced by a low-frequency transcranial focused ultrasound system within ex vivo human skulls. IEEE Trans Ultrason Ferroelectr Freq Control. 2010;57(9):1967–76.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Vykhodtseva N, McDannold N, Hynynen K. Progress and problems in the application of focused ultrasound for blood-brain barrier disruption. Ultrasonics. 2008;48(4):279–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Wahl RL, Herman JM, Ford E. The promise and pitfalls of positron emission tomography and single-photon emission computed tomography molecular imaging-guided radiation therapy. Semin Radiat Oncol. 2011;21(2):88–100.

    Article  PubMed  Google Scholar 

  5. Ling CC, Humm J, Larson S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys. 2000;47(3):551–60.

    Article  CAS  PubMed  Google Scholar 

  6. Pinkawa M, Holy R, Piroth MD, et al. Intensity-modulated radiotherapy of prostate carcinoma with simultaneous integrated boost for molecular imaging with F-18-choline PET-CT. Strahlenther Onkol. 2010;186:56–7.

    Article  Google Scholar 

  7. Pinkawa M, Holy R, Piroth MD, et al. Intensity-modulated radiotherapy for prostate cancer implementing molecular imaging with F-18-choline PET-CT to define a simultaneous integrated boost. Strahlenther Onkol. 2010;186(11):600–6.

    Article  PubMed  Google Scholar 

  8. Niyazi M, Bartenstein P, Belka C, Ganswindt U. Choline-PET-based dose painting in prostate cancer model by different techniques simultaneous boost. Strahlenther Onkol. 2010;186:58.

    Google Scholar 

  9. Sgouros G. Dosimetry of internal emitters. J Nucl Med. 2005;46:18S–27.

    PubMed  Google Scholar 

  10. Fiedler F, Shakirin G, Skowron J, et al. On the effectiveness of ion range determination from in-beam PET data. Phys Med Biol. 2010;55(7):1989–98.

    Article  PubMed  Google Scholar 

  11. Hanson KM, Cunningham GS. Exploring the reliability of Bayesian reconstructions. Paper presented at: Medical Imaging 1995: Image Processing, San Diego; 1995.

    Google Scholar 

  12. CBTRUS. Statistical report: primary brain tumors in the United States, 2000–2004. Central Brain Tumor Registry of the United States, Hinsdale; 2008.

    Google Scholar 

  13. Wiebe S, Blume WT, Girvin JP, Eliasziw M. Effectiveness efficiency surgery T. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med. 2001;345(5):311–8.

    Article  CAS  PubMed  Google Scholar 

  14. Wrensch M, Rice T, Miike R, et al. Diagnostic, treatment, and demographic factors influencing survival in population-based adult glioma patients in the San Francisco Bay area. Neuro Oncol. 2006;8(1):12–26.

    Article  PubMed Central  PubMed  Google Scholar 

  15. McGirt MJ, Mukherjee D, Chaichana KL, Than KD, Weingart JD, Quinones-Hinojosa A. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery. 2009;65(3):463–70.

    Article  PubMed  Google Scholar 

  16. Claus EB, Horlacher A, Hsu LG, et al. Survival rates in patients with low-grade glioma after intraoperative magnetic resonance image guidance. Cancer. 2005;103(6):1227–33.

    Article  PubMed  Google Scholar 

  17. Wu JS, Mao Y, Zhou LF, et al. Clinical evaluation and follow-up outcome of diffusion tensor IMAGING-BASED functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery. 2007;61(5):935–48.

    Article  PubMed  Google Scholar 

  18. Hochberg FH, Pruitt A. Assumptions in the radiotherapy of glioblastoma. Neurology. 1980;30(9):907–11.

    Article  CAS  PubMed  Google Scholar 

  19. Tovi M. MR-imaging in cerebral gliomas analysis of tumor-tissue components. Acta Radiol. 1993;384:1–24.

    CAS  Google Scholar 

  20. Stummer W, Pichlmeier U, Meinel T, et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401.

    Article  CAS  PubMed  Google Scholar 

  21. Agar NYR, Golby AJ, Ligon KL, et al. Development of stereotactic mass spectrometry for brain tumor surgery. Neurosurgery. 2011;68(2):280–90.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Ferrant M, Nabavi A, Macq B, et al. Serial registration of intraoperative MR images of the brain. Med Image Anal. 2002;6(4):337–59.

    Article  PubMed  Google Scholar 

  23. O’Shea JP, Whalen S, Branco DM, Petrovich NM, Knierim KE, Golby AJ. Integrated image- and function-guided surgery in eloquent cortex: a technique report. Int J Med Robot. 2006;2(1):75–83.

    PubMed  Google Scholar 

  24. Tokuda J, Fischer GS, Papademetris X, et al. OpenIGTLink: an open network protocol for image-guided therapy environment. Int J Med Robot. 2009;5(4):423–34.

    PubMed Central  PubMed  Google Scholar 

  25. Andriole GL, Grubb RL, Buys SS, et al. Mortality results from a randomized prostate-cancer screening trial. N Engl J Med. 2009;360(13):1310–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Cormack RA, D’Amico AV, Hata N, Silverman S, Weinstein M, Tempany CM. Feasibility of transperineal prostate biopsy under interventional magnetic resonance guidance. Urology. 2000;56(4):663–4.

    Article  CAS  PubMed  Google Scholar 

  27. Hata N, Jinzaki M, Kacher D, et al. MR imaging-guided prostate biopsy with surgical navigation software: device validation and feasibility. Radiology. 2001;220(1):263–8.

    Article  CAS  PubMed  Google Scholar 

  28. Tokuda J, Tuncali K, Iordachita I, et al. Preliminary accuracy evaluation of 3T MRI-guided transperineal prostate biopsy with grid template. 19th ISMRM annual meeting 2011, Montréal; 2011.

    Google Scholar 

  29. Tuncali K, Tokuda J, Fedorov A, et al. 3T MRI-guided transperineal targeted prostate biopsy: clinical feasibility, safety, and early results. 19th ISMRM annual meeting, Montréal; 2011.

    Google Scholar 

  30. Fedorov A, Tuncali K, Fennessy F, et al. Hierarchical image registration for improved sampling during 3T MRI-guided transperineal targeted prostate biopsy. Paper presented at: 19th ISMRM annual meeting, Montréal; 2011.

    Google Scholar 

  31. Adams MC, Turkington TG, Wilson JM, Wong TZ. A systematic review of the factors affecting accuracy of SUV measurements. Am J Roentgenol. 2010;195(2):310–20.

    Article  Google Scholar 

  32. Alessio AM, Stearns CW, Tong S, et al. Application and evaluation of a measured spatially variant system model for PET image reconstruction. IEEE Trans Med Imaging. 2010;29(3):938–49.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Cloquet C, Sureau FC, Defrise M, Van Simaeys G, Trotta N, Goldman S. Non-Gaussian space-variant resolution modelling for list-mode reconstruction. Phys Med Biol. 2010;55(17):5045–66.

    Article  CAS  PubMed  Google Scholar 

  34. Doot RK, Scheuermann JS, Christian PE, Karp JS, Kinahan PE. Instrumentation factors affecting variance and bias of quantifying tracer uptake with PET/CT. Med Phys. 2010;37(11):6035–46.

    Article  CAS  PubMed  Google Scholar 

  35. Tong S, Alessio AM, Kinahan PE. Noise and signal properties in PSF-based fully 3D PET image reconstruction: an experimental evaluation. Phys Med Biol. 2010;55(5):1453–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Tong S, Alessio AM, Thielmans K, Stearns CW, Ross SG, Kinahan PE. Properties of edge artifacts in PSF-based PET reconstruction. Paper presented at: IEEE nuclear science symposium and medical imaging conference, Knoxville; 2010.

    Google Scholar 

  37. Zhang L, Staelens S, Van Holen R, Verhaeghe J, Vandenberghe S. Characterization of the ringing artifacts in rotator-based reconstruction with Monte Carlo-based resolution compensation for PET. Med Phys. 2010;37(9):4648–60.

    Article  PubMed  Google Scholar 

  38. Snyder DL, Miller MI, Thomas LJ, Politte DG. Noise and edge artifacts in maximum-likelihood reconstructions for emission tomography. IEEE Trans Med Imaging. 1987;6(3):228–38.

    Article  CAS  PubMed  Google Scholar 

  39. Mumcuoglu EU, Leahy RM, Cherry SR, Hoffman E. Accurate geometric and physical response modelling for statistical image reconstruction in high resolution PET. Paper presented at: IEEE Nuclear Science Symposium, Anaheim; 1996.

    Google Scholar 

  40. Qi JY, Leahy RM, Cherry SR, Chatziioannou A, Farquhar TH. High-resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. Phys Med Biol. 1998;43(4):1001–13.

    Article  CAS  PubMed  Google Scholar 

  41. Reader AJ, Julyan PJ, Williams H, Hastings DL, Zweit J. EM algorithm system modeling by image-space techniques for PET reconstruction. IEEE Trans Nucl Sci. 2003;50(5):1392–7.

    Article  CAS  Google Scholar 

  42. Panin VY, Kehren F, Michel C, Casey M. Fully 3-D PET reconstruction with system matrix derived from point source measurements. IEEE Trans Med Imaging. 2006;25(7):907–21.

    Article  PubMed  Google Scholar 

  43. Sureau FC, Reader AJ, Comtat C, et al. Impact of image-space resolution modeling for studies with the high-resolution research tomograph. J Nucl Med. 2008;49(6):1000–8.

    Article  PubMed  Google Scholar 

  44. Bai B, Esser PD. The effect of edge artifacts on quantification of positron emission tomography. Paper presented at: IEEE Nuclear Science Symposium, Knoxville; 2010.

    Google Scholar 

  45. Thielemans K, Asma E, Ahn S, et al. Impact of PSF modelling on the convergence rate and edge behavior of EM images in PET. Paper presented at: IEEE Nuclear Science Symposium, Knoxville; 2010.

    Google Scholar 

  46. Tong S, Alessio AM, Thielemans K, Stearns C, Ross S, Kinahan PE. Properties and mitigation of edge artifacts in PSF-based PET reconstruction. IEEE Trans Nucl Sci. 2011;58(5):2264–75.

    Article  Google Scholar 

  47. Tatli S, Gerbaudo VH, Feeley CM, Shyn PB, Tuncali K, Silverman S. PET/CT-guided percutaneous biopsy of abdominal masses: initial experience. J Vasc Interv Radiol. 2011;22(4):507–14.

    Article  PubMed  Google Scholar 

  48. Sainani NI, Shyn PB, Tatli S, Morrison PR, Tuncali K, Silverman S. PET/CT-guided radiofrequency and cryoablation: is tumor flourine-18 fluorodeoxyglucose activity dissipated by thermal ablation? J Vasc Interv Radiol. 2011;22(3):354–60.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc A. Jolesz MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kijewski, M.F., Tempany, C.M.C., Golby, A.J., Jolesz, F.A. (2014). PET/CT for Interventional Use. In: Jolesz, F. (eds) Intraoperative Imaging and Image-Guided Therapy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7657-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7657-3_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7656-6

  • Online ISBN: 978-1-4614-7657-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics