Skip to main content

Toward a Developmental Evolutionary Psychology

Genes, Development, and the Evolution of the Human Cognitive Architecture

  • Chapter
Evolutionary Psychology

Abstract

After a century of intermittent dialogue between psychology and evolutionary biology, the outline of a synthesis between the two disciplines now appears to be emerging. The current form of this synthesis, referred to here as narrow evolutionary psychology1 (Barkow et al., 1992; Buss, 1999), is the union of two specific frameworks from evolutionary biology and psychology. Specifically, narrow evolutionary psychology brings together the Modern Synthesis of evolutionary biology, which views evolutionary change primarily in terms of changes in gene frequency, with a nativist cognitive psychology, which views the mind as a collection of relatively autonomous, specialized processors, or modules (Hirschfeld & Gelman, 1994). As I outline in more detail below, both strands of evolutionary psychology are largely adevelopmental. There is accumulating evidence, however, that both evolutionary and psychological theory must incorporate a developmental perspective in order to construct successful theory. For example, it is now well established that a major route to evolutionary change is via alterations in developmental programs. If this is indeed the case, then evolutionary change must act in accordance with the range of possible changes to these programs, which in the case of behavior and cognition involves alterations to the development of the brain. From a psychological perspective, it is increasingly clear that ontogeny plays a far more central role in shaping behavior and cognition than its marginalization in nativist cognitive psychology allows (Quartz & Sejnowski, 1997).

EDITOR’S NOTE: In this book, the term ‘narrow evolutionary psychology’ signifies the approach to evolutionary psychology developed by Cosmides, Tooby, Buss, et al. This term was chosen not to imply that this approach has an inappropriately narrow point of view, but merely to suggest that the approach adopts a narrower range of assumptions than ‘broad evolutionary psychology’ (or, just ‘evolutionary psychology’). This latter term signifies evolutionary psychology generally, practiced with any of a very broad range of assumptions possible within the general framework of evolutionary approaches to psychology. For more detail on this terminology, see the editor’s introduction, p 1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allman, J. (1999). Evolving Brains. New York: Freeman.

    Google Scholar 

  • Arthur, W. (1997). The Origin of Animal Body Plans: A Study in Evolutionary Developmental Biology. Cambridge, U.K.; New York: Cambridge University Press.

    Book  Google Scholar 

  • Barkow, J.H., Cosmides, L., & Tooby, J. (Eds.). (1992). The Adapted Mind: Evolutionary Psychology and the Generation of Culture. New York, NY, US: Oxford University Press.

    Google Scholar 

  • Bellman, R.E. (1957). Dynamic Programming. Princeton, N J.: Princeton University Press.

    Google Scholar 

  • Berns, G.S., McClure, S.M., Pagnoni, G., & Montague, P.R. (2001). Predictability modulates human brain response to reward. Journal of Neuroscience, 21, 2793–2798.

    PubMed  Google Scholar 

  • Bradley, R.S. (1999). Paleoclimatology: Reconstructing Climates of the Quaternary (2nd ed.). San Diego: Academic Press.

    Google Scholar 

  • Brothers, L., & Ring, B. (1992). A neuroethological framework for the representation of minds. Journal of Cognitive Neuroscience, 4, 107–118.

    Article  Google Scholar 

  • Buss, D.M. (1999). Evolutionary Psychology: The New Science of the Mind. Needham Heights, MA.: Allyn & Bacon, Inc.

    Google Scholar 

  • Cosmides, L., & Tooby, J. (1994). Origins of domain specificity: The evolution of functional organization, Mapping the Mind: Domain Specificity in Cognition and Culture. (pp. 85–116). New York: Cambridge University Press.

    Google Scholar 

  • Cowie, F. (1998). What’s Within? : Nativism Reconsidered. New York: Oxford University Press.

    Google Scholar 

  • Craik, F.I.M., Moroz, T.M., Moscovitch, M., Stuss, D.T., Winocur, G., Tulving, E., & Kapur, S. (1999). In search of the self: A positron emission tomography study. Psychological Science, 10, 26–34.

    Article  Google Scholar 

  • Darlington, R.B., Dunlop, S. A., & Finlay, B.L. (1999). Neural development in metatherian and eutherian mammals: Variation and constraint. Journal of Comparative Neurology, 411, 359–368.

    Article  PubMed  Google Scholar 

  • Davidson, E.H. (2001). Genomic Regulatory Systems: Development and Evolution. San Diego: Academic Press.

    Google Scholar 

  • Deacon, T. W. (1997). The Symbolic Species: The Co-evolution of Language and the Brain. New York: W.W. Norton.

    Google Scholar 

  • Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284, 970–974.

    Article  PubMed  Google Scholar 

  • Depue, R.A., & Collins, P.F. (1999). Neurobiology of the structure of personality: Dopamine, facilitation of incentive motivation, and extraversion. Behavioral & Brain Sciences, 22, 491–569.

    Google Scholar 

  • Diamond, A. (1985). Development of the ability to use recall to guide action, as indicated by infants’ performance on AB. Child Development, 56, 868–883.

    Article  PubMed  Google Scholar 

  • Diamond, A. (1998). Evidence for the importance of dopamine for prefrontal cortex functions early in life, The Prefrontal Cortex: Executive and Cognitive Functions. (pp. 144–164). New York: Oxford University Press.

    Google Scholar 

  • Diamond, A., & Doar, B. (1989). The performance of human infants on a measure of frontal cortex function, the delayed response task. Developmental Psychobiology, 22, 271–294.

    Article  PubMed  Google Scholar 

  • Diamond, A., Prevor, M.B., Callender, G., & Druin, D.P. (1997). Prefrontal cortex cognitive deficits in children treated early and continuously for PKU. Monographs of the Society for Research in Child Development, 62, 1–205.

    Article  Google Scholar 

  • Dobzhansky, T. (1951). Genetics and the Origin of Species. (3rd Ed.). New York: Columbia University Press.

    Google Scholar 

  • Elman, J.L. (1996). Rethinking Innateness: A Connectionist Perspective on Development. Cambridge, Ma.: MIT Press.

    Google Scholar 

  • Engert, F., & Bonhoeffer, T. (1999). Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature, 399, 66–70.

    Article  PubMed  Google Scholar 

  • Finlay, B.L., & Darlington, R.B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268, 1578–1584.

    Article  PubMed  Google Scholar 

  • Finlay, B.L., Darlington, R. B., & Nicastro, N. (2001). Developmental structure in brain evolution. Behavioral & Brain Sciences, 24, 263.

    Article  Google Scholar 

  • Finlay, B.L., Hersman, M.N., & Darlington, R.B. (1998). Patterns of vertebrate neurogenesis and the paths of vertebrate evolution. Brain, Behavior and Evolution, 52, 232–242.

    Article  PubMed  Google Scholar 

  • Fodor, J. A. (1983). Modularity of Mind: An Essay on Faculty Psychology. Cambridge, MA.: MIT Press.

    Google Scholar 

  • Fodor, J.A. (2000). The Mind Doesn’t Work That Way: The Scope and Limits of Computational Psychology. Cambridge, MA.: The MIT Press.

    Google Scholar 

  • Frahm, H.D., Stephan, H., & Stephan, M. (1982). Comparison of brain structure volumes in Insectivora and Primates. I. Neocortex. Journal fur Hirnforschung, 23, 375–389.

    PubMed  Google Scholar 

  • Gallistel, C.R. (1990). The Organization of Learning. Cambridge, Ma.: MIT Press.

    Google Scholar 

  • Garris, P.A., Kilpatrick, M., Bunin, M.A., Michael, D., Walker, Q.D., & Wightman, R.M. (1999). Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature, 398, 67–69.

    Article  PubMed  Google Scholar 

  • Giedd, J.N., Blumenthal, J., Jeffries, N.O., Castellanos, F.X., Liu, H., Zijdenbos, A., Paus, T., Evans, A.C., & Rapoport, J.L. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nature Neuroscience, 2, 861–863.

    Article  PubMed  Google Scholar 

  • Gilbert, S.F., Opitz, J. M., & Raff, R.A. (1996). Resynthesizing evolutionary and developmental biology. Developmental Biology, 173, 357–372.

    Article  PubMed  Google Scholar 

  • Goldman-Rakic, P.S. (1990). Cortical localization of working memory. In J.L. McGaugh, N.M. Weinberger, and G. Lynch (Eds.). Brain organization and memory: Cells, systems, and circuits. (pp. 285–298). New York: Oxford University Press.

    Google Scholar 

  • Gould, S.J. (2000). Of coiled oysters and big brains: How to rescue the terminology of heterochrony, now gone astray. Evolution and Development, 2, 241–248.

    Article  PubMed  Google Scholar 

  • Gould, S.J., & Lewontin, R.C. (1979). The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proceedings of the Royal Society of London. Series B: Biological Sciences, 205, 581–598.

    Article  Google Scholar 

  • Hall, B.K. (1998). Evolutionary Developmental Biology. New York: Chapman & Hall.

    Book  Google Scholar 

  • Hammer, M. (1993). An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees. Nature, 366, 59–63.

    Article  Google Scholar 

  • Hebb, D.O. (1949). The Organization of Behavior: A Neuropsychological Theory. New York: Wiley.

    Google Scholar 

  • Hirschfeld, L.A., & Gelman, S.A. (Eds.). (1994). Mapping the Mind: Domain Specificity in Cognition and Culture. New York: Cambridge University Press.

    Google Scholar 

  • Hirth, F., & Reichert, H. (1999). Conserved genetic programs in insect and mammalian brain development. Bioessays, 21, 684.

    Article  Google Scholar 

  • Johnson, M.H. (1997). Developmental Cognitive Neuroscience: An Introduction. Maiden, MA.: Black well Publishers Inc.

    Google Scholar 

  • Lovejoy, CO., Cohn, M.J., & White, T.D. (1999). Morphological analysis of the mammalian postcranium: A developmental perspective. Proceedings of the National Academy of Sciences (USA), 96, 13247–13252.

    Article  Google Scholar 

  • Maletic-Savatic, M., Malinow, R., & Svoboda, K. (1999). Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science, 283, 1923–1927.

    Article  PubMed  Google Scholar 

  • McConnell, S.K. (1995). Constructing the cerebral cortex: Neurogenesis and fate determination. Neuron, 15, 761–768.

    Article  PubMed  Google Scholar 

  • Montague, P.R., Dayan, P., Person, C, & Sejnowski, T.J. (1995). Bee foraging in uncertain environments using predictive hebbian learning. Nature, 377, 725–728.

    Article  PubMed  Google Scholar 

  • Montague, P.R., & Quartz, S.R. (1999). Computational approaches to neural reward and development. Mental Retardation & Developmental Disabilities Research Reviews, 5, 86–99.

    Article  Google Scholar 

  • Montague, P.R., & Sejnowski, T.J. (1994). The predictive brain: Temporal coincidence and temporal order in synaptic learning mechanisms. Learning and Memory, 7, 1–33.

    Google Scholar 

  • Nieuwenhuys, R., Donkelaar, H.J.T. & Nicholson, C. (1998). The Central Nervous System of Vertebrates. New York: Springer.

    Google Scholar 

  • Norman, D.A., & Shallice, T. (1986). Attention to Action: Willed and Automatic Control of Behavior. In R. J. Davidson, G.E. Schwartz and D. Shapiro (Ed.), Consciousness and Self Regulation (pp. 1–18). New York: Plenum Press.

    Google Scholar 

  • Peterson, C.C., & Siegai, M. (1995). Deafness, conversation and theory of mind. Journal of Child Psychology and Psychiatry, 36, 459–474.

    Article  PubMed  Google Scholar 

  • Petrides, M. (1995). Functional organization of the human frontal cortex for mnemonic processing: Evidence from neuroimaging studies. In J. Grafman, K. J. Holyoak, and F. Boiler (Eds.), Structure and Functions of the Human Prefrontal Cortex (pp. 85–96). New York: New York Academy of Sciences.

    Google Scholar 

  • Pick, L. (1998). Segmentation: Painting stripes from flies to vertebrates. Developmental Genetics, 23, 1–10.

    Article  PubMed  Google Scholar 

  • Pinker, S. (1997). How the Mind Works. New York: Norton.

    Google Scholar 

  • Potts, R. (1996). Humanity’s Descent. New York: William Morrow.

    Google Scholar 

  • Purves, D., White, L.E., & Riddle, D.R. (1996). Is neural development Darwinian? Trends in Neurosciences, 19, 460–464.

    Article  PubMed  Google Scholar 

  • Quartz, S.R, & Sejnowski, TJ. (1997). The neural basis of cognitive development: A constructivist manifesto. Behavioral & Brain Sciences, 20, 537–596.

    Google Scholar 

  • Quartz, S. R. (1999). The constructivist brain. Trends in Cognitive Sciences, 3, 48–57.

    Article  PubMed  Google Scholar 

  • Quartz, S.R. & Sejnowski, TJ. (2000). Constraining constructivism: Cortical and subcortical constraints on learning in development, Behavioral and Brain Sciences, 23, 785–791.

    Article  Google Scholar 

  • Raff, R.A. (1996). The Shape of Life: Genes, Development, and the Evolution of Animal Form. Chicago: University of Chicago Press.

    Google Scholar 

  • Raff, R.A. (2000). Evo-devo: The evolution of a new discipline. Nature Reviews Genetics, 1, 74–79.

    Article  PubMed  Google Scholar 

  • Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241, 170–176.

    Article  PubMed  Google Scholar 

  • Real, L.A. (1991). Animal choice behavior and the evolution of cognitive architecture. Science, 253, 980–986.

    Article  PubMed  Google Scholar 

  • Reichert, H., & Simeone, A. (1999). Conserved usage of gap and homeotic genes in patterning the CNS. Current Opinion in Neurobiology, 9, 589–595.

    Article  PubMed  Google Scholar 

  • Reinitz, J., Kosman, D., Vanario-Alonso, C.E., & Sharp, D.H. (1998). Stripe forming architecture of the gap gene system. Developmental Genetics, 23, 11–27.

    Article  PubMed  Google Scholar 

  • Ross, C.A., Ruggiero, D.A., Park, D.H., Joh, T.H., Sved, A.F., Fernandez-Pardal, J., Saavedra, J.M., & Reis, D.J. (1984). Tonic vasomotor control by the rostral ventrolateral medulla: Effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. Journal of Neuroscience, 4, 474–494.

    PubMed  Google Scholar 

  • Rubenstein, J. L., Martinez, S., Shimamura, K., & Puelles, L. (1994). The embryonic vertebrate forebrain: The prosomeric model. Science, 266, 578–580.

    Article  PubMed  Google Scholar 

  • Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S.C.R., Simmons, A., Andrew, C., & Bullmore, E.T. (2000). Functional frontalisation with age: Mapping neurodevelopmental trajectories with fMRI. Neuroscience & Biobehavioral Reviews, 24, 13–19.

    Article  Google Scholar 

  • Ruff, C.B., Trinkaus, E., & Holliday, T.W. (1997). Body mass and encephalization in Pleistocene Homo. Nature, 387: 173–176.

    Article  PubMed  Google Scholar 

  • Russell, P.A., Hosie, J.A., Gray, CD., Scott, C, Hunter, N., Banks, J.S., & Macaulay, M.C. (1998). The development of theory of mind in deaf children. Journal of Child Psychology and Psychiatry, 39:, 903–910.

    Article  PubMed  Google Scholar 

  • Sawaguchi, T., & Goldman-Rakic, P.S. (1994). The role of Dl-dopamine receptor in working memory: Local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. Journal of Neurophysiology, 71, 515–528.

    PubMed  Google Scholar 

  • Schultz, W. (2000). Multiple reward signals in the brain. Nauret Review Neuroscence, 1, 199–207.

    Google Scholar 

  • Schultz, W., Apicella, P., & Ljungberg, T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. Journal of Neuroscience, 13, 900–913.

    PubMed  Google Scholar 

  • Stephan, H., Frahm, H., & Baron, G. (1981). New and revised data on volumes of brain structures in insectivores and primates. Folia Primatologica, 35, 1–29.

    Article  Google Scholar 

  • Sterelny, K., & Griffiths, P.E. (1999). Sex and Death: An Introduction to Philosophy of Biology. Chicago: University of Chicago Press.

    Google Scholar 

  • Stone, V.E., Baron-Cohen, S., & Knight, R.T. (1998). Frontal lobe contributions to theory of mind. Journal of Cognitive Neuroscience, 10, 640–656.

    Article  PubMed  Google Scholar 

  • Sutton, R.S., & Barto, A.G. (1998). Reinforcement Learning: An Introduction. Cambridge, MA.: MIT Press.

    Google Scholar 

  • Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications of the ACM, 38, 58–68.

    Article  Google Scholar 

  • Thompson, P.M., Giedd, J.N., Woods, R.P., MacDonald, D., Evans, A.C., & Toga, A.W. (2000). Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, 404, 190–193.

    Article  PubMed  Google Scholar 

  • Tomasello, M. (1999). The Cultural Origins of Human Cognition. Cambridge, MA.: Harvard University Press.

    Google Scholar 

  • Tooby, J., & Cosmides, L. (1992). The psychological foundations of culture. In J. Barkow, L. Cosmides, and J. Tooby (Eds.). The Adapted Mind: Evolutionary Psychology and the Generation of Culture. (pp. 19–136). New York: Oxford University Press.

    Google Scholar 

  • Wise, R.A. (1996). Addictive drugs and brain stimulation reward. Annual Review of Neuroscience, 19, 319–340.

    Article  PubMed  Google Scholar 

  • Wong, W.T. & Wong, R.O. (2000). Rapid dendritic movements during synapse formation and rearrangement. Currint Opinion in Neurobiology, 10, 118–124.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Quartz, S.R. (2003). Toward a Developmental Evolutionary Psychology. In: Scher, S.J., Rauscher, F. (eds) Evolutionary Psychology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0267-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0267-8_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4995-2

  • Online ISBN: 978-1-4615-0267-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics