Skip to main content

Chemical Anatomy and Synaptic Connectivity of the Globus Pallidus and Subthalamic Nucleus

  • Chapter
Basal Ganglia and Thalamus in Health and Movement Disorders

Abstract

Since the pioneering work of Whittier and Mettler (1949) showing that small electrolytic lesion of the subthalamic nucleus (STN) induces violent involuntary movements of the contralateral limbs in non-human primates, the exact mechanisms by which the STN plays such a powerful role in the control of motor behaviors have been the subject of intensive research. In the 1980’s, the introduction of sensitive immunocytochemical and tract-tracing techniques, combined with single-unit recording in normal and parkinsonian monkeys, led to major breakthroughs in our knowledge of the critical role of this nucleus in the functional circuitry of the basal ganglia (Albin et al., 1989; Bergman et al., 1990; Wichmann and DeLong, 1996). The STN, which is the only excitatory glutamatergic structure of the basal ganglia (Smith and Parent, 1988), is now considered to be a major source of excitatory drive to basal ganglia output nuclei (Kitai and Kita, 1987). Observations in l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP)-treated monkeys showing that the STN activity is increased after dopamine depletion led to the development of novel surgical therapies aimed at silencing STN outflow to basal ganglia output nuclei (Bergman et al., 1990; Aziz et al., 1991). Such therapies are currently used worldwide as efficient treatment for Parkinson’s disease in humans (Starr et al., 1998). The recent demonstration that the interconnections between the globus pallidus (GP) and the STN act as a pacemaker of neuronal oscillations observed in various basal ganglia structures after dopamine depletion is further evidence that the STN plays a critical role in mediating basal ganglia functions in both normal and pathological conditions (Plenz and Kitai, 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Afsharpour, S., 1985, Topographical projections of the cerebral cortex to the subthalamic nucleus, J. Comp. Neurol. 236:14.

    Article  PubMed  CAS  Google Scholar 

  • Albin, R.L., Young, A.B., and Penney, J.B. Jr., 1989, The functional anatomy of basal ganglia disorders, Trends Neurosci. 12:366.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, G.E., and Crutcher, M.E., 1990, Functional architecture of basal ganglia circuits: neural substrates of parallel processing, Trends Neurosci. 13:266.

    Article  PubMed  CAS  Google Scholar 

  • Asanuma, C., 1994, GABAergic and pallidal terminals in the thalamic reticular nucleus of squirrel monkeys, Exp. Brain Res. 101:439.

    Article  PubMed  CAS  Google Scholar 

  • Aziz, T.Z., Peggs, D., Sambrook, M.A., and Crossman, A.R., 1991, Lesion of the subthalamic nucleus for the alleviation of l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate, Movement Dis. 6:388.

    Article  Google Scholar 

  • Berendse, H.W., and Groenewegen, H.J., 1989, The connections of the medial part of the subthalamic nucleus in the rat: evidence for a parallel organization, in: The Basal Ganglia III, G. Bernardi, M.B. Carpenter, G. Di Chiara, M. Morelli, and P. Stanzione, eds., Plenum Press, New York.

    Google Scholar 

  • Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., and Vaadia, E., 1998, Physiological aspects of information processing in the basal ganglia of normal and parkinsonian primates, Trends Neurosci. 21:32.

    Article  PubMed  CAS  Google Scholar 

  • Bergman, H., Wichmann, T., and DeLong, MR., 1990, Reversal of experimental parkinsonism by lesions of the subthalamic nucleus, Science, 249:1436.

    Article  PubMed  CAS  Google Scholar 

  • Bernard, V., and Bolam, J.P., 1998, Subcellular and subsynaptic distribution of NR1 subunit of the NMDA receptor in the neostriatum and globus pallidus of the rat: co-localization at synapses with the GluR2/3 subunit of the AMPA receptor, Eur. J. Neurosci. 10:3721.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, M.D., and Bolam, J.P., 1995, Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus of the rat, J. Neurosci. 15: 7105.

    PubMed  CAS  Google Scholar 

  • Bevan, M.D., Booth, P.A.C., Eaton, S.A., and Bolam, J.P.,1998, Selective innervation of neostriatal interneurons by a subclass of neurons in the globus pallidus of the rat, J. Neurosci. 18:9438.

    PubMed  CAS  Google Scholar 

  • Bevan, M.D., Clarke, N.P., and Bolam, J.P., 1997, Synaptic integration of functionally diverse pallidal information in the entopeduncular nucleus and subthalamic nucleus in the rat, J. Neurosci. 17:308.

    PubMed  CAS  Google Scholar 

  • Bevan, M.D., Francis, C.M., and Bolam, J.P., 1995, The glutamate-enriched cortical and thalamic input to neurons in the subthalamic nucleus of the rat: convergence with GABA-positive terminals, J. Comp. Neurol. 361:491.

    Article  PubMed  CAS  Google Scholar 

  • Blandini, F., Porter, H.P., and Greenamyre, J.T., 1996, Glutamate and Parkinson’s disease, Molec. Neurobiol. 12:73.

    Article  CAS  Google Scholar 

  • Bonanno, G., Fassio, A., Sala, R., Schmid, G., and Raiteri, M., 1998, GABAB receptors as potential targets for drugs able to prevent excessive excitatory amino acid transmission in the spinal cord, Eur. J. Pharmacol. 362:143.

    Article  PubMed  CAS  Google Scholar 

  • Bordi, F., and Ugolini, A., 1999, Group I metabotropic glutamate receptors: Implications for brain diseases, Prog. Neurobiol. 59:55.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, S.R., Marino, M.J., Wittmann, M., Rouse, S.T., Awad, H., Levey, A.I., and Conn, P.J., 2000, Activation of group II metabotropic glutamate receptors inhibits synaptic excitation of the substantia nigra pars reticulata, J. Neurosci. 20:3085.

    PubMed  CAS  Google Scholar 

  • Bradley, S.R., Standaert, D.G., Rhodes, K.J., Rees, H.J., Testa, C.M., Levey, A.I., and Standaert, D.G., 1999, Immunohistochemical localization of subtype 4a metabotropic glutamate receptors in the rat and mouse basal ganglia, J. Comp. Neurol. 407:33.

    Article  PubMed  CAS  Google Scholar 

  • Charara, A, Heilman, C., and Levey, A.I., 2000a, Pre- and Post-synaptic GABAB receptors in the basal ganglia in monkeys, Neuroscience, 95:127.

    Article  PubMed  CAS  Google Scholar 

  • Charara, A., Kulik, A., Shigemoto, R., and Smith, Y., 2000b, Cellular and subcellular localization of GABABR2 receptors in the basal ganglia in monkeys, Soc. Neurosci. Abstr. 26: 6071.

    Google Scholar 

  • Charara, A., and Smith, Y., 1998, Subsynaptic distribution of GABAA receptor subunits in the globus pallidus and subthalamic nucleus in monkeys, Soc. Neurosci. Abstr. 24:650.

    Google Scholar 

  • Chesselet, M.-F., and Delfs, J.M., 1996, Basal ganglia and movement disorders: an update, Trends Neurosci. 19:417.

    PubMed  CAS  Google Scholar 

  • Clarke, N.P., and Bolam, J.P., 1998, Distribution of glutamate receptor subunits at neurochemically characterized synapses in the entopeduncular nucleus and subthalamic nucleus of the rat, J. Comp. Neurol. 397:403.

    Article  PubMed  CAS  Google Scholar 

  • Conn, P. J., and Pin, J.P., 1997, Pharmacology and functions of metabotropic glutamate receptors, Ann. Rev. Pharmacol. Toxicol. 37:205.

    Article  CAS  Google Scholar 

  • Davies, J., 1981, Selective depression of synaptic excitation in cat spinal neurones by baclofen: aniontophoretic study, Br. J. Pharmacol. 72:373.

    Article  PubMed  CAS  Google Scholar 

  • DeLong, M.R., 1990, Primate models of movement disorders of basal ganglia origin, Trends Neurosci. 13:281.

    Article  PubMed  CAS  Google Scholar 

  • DeLong, M.R., Crutcher, M.D., and Georgopoulos, A.P., 1985, Primate globus pallidus and subthalamic nucleus functional organization, J. Neurophysiol. 53:530.

    PubMed  CAS  Google Scholar 

  • Deschenes, M., Bourassa, J., Doan, V.D., and Parent, A., 1996, A single-cell study of the axonal projections arising from the posterior intralaminar thalamic nuclei in the rat, Eur. J. Neurosci. 8:329.

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia, M., Pasik, P., and Pasik, T., 1982, A Golgi and ultrastructural study of the monkey globus pallidus, J. Comp. Neurol. 212:53.

    Article  PubMed  CAS  Google Scholar 

  • Feger, J., Bevan, M., and Crossman, A.R., 1994, The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: a comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labeling study, Neuroscience, 60:125.

    Article  PubMed  CAS  Google Scholar 

  • Feger, J., Hassani, O.-K., and Mouroux, M., 1995, The relationships between subthalamic nucleus, globus pallidus and thalamic parafascicular nucleus, in: The Basal Ganglia V, C. Ohye, M. Kimura, and J.S. McKenzie, eds., Plenum Press, London.

    Google Scholar 

  • Féger, J., Hassani, O.-K., and Mouroux, M., 1997, The subthalamic nucleus and its connections. New electrophysiological and pharmacological data, in: The Basal Ganglia and New Surgical Approaches for Parkinson’s Disease, J.A. Obeso, M.R. DeLong, C. Ohye, and C.D. Marsden, eds., Lippincott-Raven Publishers, Philadelphia.

    Google Scholar 

  • Flaherty, A.W., and Graybiel, A.M., 1991, Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations, J. Neurophysiol. 66:1249.

    PubMed  CAS  Google Scholar 

  • Flores, G., Liang, J.J., Sierra, A., Martinez-Fong, D., Quirion, R., Aceves, J., and Srivastava, L.K., 1999, Expression of dopamine receptors in the subthalamic nucleus of the rat: characterization using reverse transcriptase-polymerase chain reaction and autoradiography, Neuroscience, 91:549.

    Article  PubMed  CAS  Google Scholar 

  • Fox, C.A., Andrade, A.N., LuQui, I.J., and Rafols, J.A., 1974, The primate globus pallidus: a Golgi and electron microscopic study, J. Hirnforschung, 15:75.

    CAS  Google Scholar 

  • Fox, S., Krnjevic, K., Morris, M.E., Puil, E., and Werman, P., 1978, Action of baclofen on mammalian synaptic transmission, Neuroscience, 3:445.

    Article  Google Scholar 

  • Fritschy, J.-M., and Möhler, 1995, GABAA receptor heterogeneity in the adult rat brain: differential regional and cellular distribution of seven major subunits, J. Comp. Neurol. 359:154.

    Article  PubMed  CAS  Google Scholar 

  • Gash, D.M., Zhang, Z., Ovadia, A., Cass, W.A., Yi, A., Simmerman, L., Russell, D., Martin, D., Lapchak, P.A., Collins, F., Hoffer, B.J., and Gerhardt, G.A., 1996, Functional recovery in parkinsonian monkeys treated with GDNF, Nature, 380: 252.

    Article  PubMed  CAS  Google Scholar 

  • Gauthier, J., and Parent, A. (1999) The axonal arborization of single nigrostriatal neurons in rats, Brain Res. 834:228.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J., and Sibley, D.R., 1990, Dl and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons, Science, 250:1429.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.R., and Wilson, C.J., 1996, The basal ganglia, in: Handbook of Chemical Neuroanatomy, Integrated Systems of the CNS, Part III, A. Björklund, T. Hökfelt, and L. Swanson, eds., Elsevier, Amsterdam.

    Google Scholar 

  • Hanley, J. J., and Bolam, J.P., 1997, Synaptology of the nigrostriatal projection in relation to the compartmental organization of the neostriatum in the rat, Neuroscience, 81:353.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, J.E., and Smith, Y., 1999, Group I metabotropic glutamate receptors at GABAergic synapses in monkeys, J. Neurosci. 19:6488.

    PubMed  CAS  Google Scholar 

  • Hartmann-von Monakow, K., Akert, K., and Kunzle, H., 1978, Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey, Exp. Brain Res. 33:395.

    Google Scholar 

  • Hassani, O.-K., and Féger, J., 1999, Effects of intrasubthalamic injection of dopamine receptor agonists on subthalamic neurons in normal and 6-hydroxydopamine-lesioned rats: an electrophysiological and c-fos study, Neuroscience, 92: 533.

    Article  PubMed  CAS  Google Scholar 

  • Hassani, O-K., François, C., Yelnik, J., and Féger, J., 1997, Evidence for a dopaminergic innervation of the subthalamic nucleus in the rat, Brain Res. 749:88.

    Article  PubMed  CAS  Google Scholar 

  • Hauber, W. and Lutz, S., 1999, Dopamine Dl or D2 receptor blockade in the globus pallidus produces akinesia in the rat, Behav. Brain Res. 106:143.

    Article  PubMed  CAS  Google Scholar 

  • Hazrati, L.-N., and Parent, A., 1991, Projection from the external pallidum to the reticular thalamic nucleus in the squirrel monkey, Brain Res. 550:142.

    Article  PubMed  CAS  Google Scholar 

  • Helton, D.R., Tizzano, J.P., Monn, J.A., Schoepp, D.D., and Kallman, M.J., 1998, Anxiolytic and side-effect profile of LY354740: A potent, highly selective, orally active agonist for group II metabotropic glutamate receptors, J. Pharmacol. Exp. Ther. 284:651.

    PubMed  CAS  Google Scholar 

  • Hontanilla, B., Parent, A., and Giménez-Amaya, J., 1997, Parvalbumin and calbindin D-28k in the entopeduncular nucleus, subthalamic nucleus, and substantia nigra of the rat as revealed by double- immunohistochemical methods, Synapse, 25:359.

    Article  PubMed  CAS  Google Scholar 

  • Inase, M., Tokuno, H., Nambu, A., Akazawa, T., and Takada, M., 1999, Corticostriatal and corticosubthalamic input zones form the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area, Brain Res. 833:191.

    Article  PubMed  CAS  Google Scholar 

  • Iwahori, N., 1978, A Golgi study on the subthalamic nucleus of the cat, J. Comp. Neurol. 182:383.

    Article  PubMed  CAS  Google Scholar 

  • Iwahori, N., and Mizuno, N., 1981, A Golgi study on the globus pallidus of the mouse, J. Comp. Neurol. 197:29.

    Article  PubMed  CAS  Google Scholar 

  • Joel, D., and Weiner, I., 1994, The organization of the basal ganglia-thalamocortical circuits: open interconnected rather than closed segregated, Neuroscience, 63:363.

    Article  PubMed  CAS  Google Scholar 

  • Joel, D., and Weiner, I., 1997, The connections of the primate subthalamic nucleus: indirect pathways and the open-interconnected scheme of basal ganglia-thalamocortical circuitry, Brain Res. Rev. 23:62.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, A., Shigemoto, R., Ohishi, H., van der Putten, H., and Mizuno, N., 1998, Imunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: a light and electron microscopic study, J. Comp. Neurol. 393:332.

    Article  PubMed  CAS  Google Scholar 

  • Kita, H., 1994a , Physiology of two disynaptic pathways from the sensorimotor cortex to the basal ganglia output nuclei, in: The Basal Ganglia IV, New Ideas and Data on Structure and Function, G. Percheron, J.S. McKenzie, and J. Féger, Plenum Press, New York.

    Google Scholar 

  • Kita, H., 1994b , Parvalbumin-immunopositive neurons in ratglobus pallidus: a light and electron microscopic study, Brain Res. 657:31.

    Article  PubMed  CAS  Google Scholar 

  • Kita, H., Chang, H.T., and Kitai, S.T., 1983, The morphology of intracellularly labeled rat subthalamic neurons: a light microscopic analysis, J. Comp. Neurol. 215:245.

    Article  PubMed  CAS  Google Scholar 

  • Kita, H., and Kitai, S.T., 1994, The morphology of globus pallidus projection neurons in the rat: an intracellular staining study, Brain Res. 636:308.

    Article  PubMed  CAS  Google Scholar 

  • Kitai, S.T., and Kita, H., 1987, Anatomy and physiology of the subthalamic nucleus: a driving force of the basal ganglia, in: The Basal Ganglia II, Structure and Function: Current Concepts, M.B. Carpenter, and A. Jayaraman, eds., Plenum Press, New York.

    Google Scholar 

  • Kosinki, C.M., Bradley, S.R., Conn, P.J., Levey, A.I., Landwermeyer, G.B., Penney, J.B., Young, A.B., and Standaert, D.G., 1999, Localization of metabotropic glutamate receptor 7 mRNA and mGluR7a protein in the rat basal ganglia, J. Comp. Neurol. 415:266.

    Article  Google Scholar 

  • Kreiss, D.S., Anderson, L.A., and Walters, J.R. 1996, Apomorphine and dopamine Dl receptor agonists increase the firing rates of subthalamic nucleus neurons, Neuroscience, 72: 863.

    Article  PubMed  CAS  Google Scholar 

  • Kiinzle, H., 1975, Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis, Brain Res. 88:195.

    Article  Google Scholar 

  • Kiinzle, H., 1977, Projections from the primary somatosensory cortex to basal ganglia and thalamus in the monkey, Brain Res. 30:481.

    Google Scholar 

  • Künzle, H., 1978, An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis, Brain Behav. Evol. 15:185.

    Article  PubMed  Google Scholar 

  • Lee, H.J., Rye, D.B., Hallanger, A.E., Levey, A.I., and Wainer, B.H., 1988, Cholinergic vs. noncholinergic efferents from the mesopontine tegmentum to the extrapyramidal motor system nuclei, J. Comp. Neurol. 275:469.

    Article  PubMed  CAS  Google Scholar 

  • Levy, R., Hazrati, L.-N., Herrero, M.-T., Vila, M., Hassani, O.K., Mouroux, M., Ruberg, M., Asensi, H., Agid, Y., Féger, J., Obeso, J.A., Parent, A., and Hirsch, E.C., 1997, Re-evaluation of the functional anatomy of the basal ganglia in normal and parkinsonian states, Neuroscience, 76:335.

    Article  PubMed  CAS  Google Scholar 

  • Matsumura, M., Kojima, J., Gardiner, T.W., and Hikosaka, O., 1992, Visual and oculomotor functions of the monkey subthalamic nucleus, J. Neurophysiol. 67:1615.

    PubMed  CAS  Google Scholar 

  • Maurice, N., Deniau, J.-M., Glowinski, J., and Thierry, A.-M., 1998, Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the corticosubthalamic circuits, J. Neurosci. 18:9539.

    PubMed  CAS  Google Scholar 

  • McGeorge, A.J., and Faull, R.L., 1989, The organization of the projection from the cerebral cortex to the striatum in the rat, Neuroscience, 29:503.

    Article  PubMed  CAS  Google Scholar 

  • Moghaddam, B., and Adams, B.W., 1998, Reversal of phencyclidine effects by group II metabotropic glutamate receptor agonist in rats, Science, 281: 1349.

    Article  PubMed  CAS  Google Scholar 

  • Mori, S., Takino, T., Yamada, H., and Sano, Y., 1985, Immunohistochemical demonstration of serotonin nerve fibers in the subthalamic nucleus of the rat, cat and monkey, Neurosci. Lett. 62:305.

    Article  PubMed  CAS  Google Scholar 

  • Moriizumi, T., Nakamura, Y., Kitao, Y., and Kudo, M., 1987, Ultrastructural analyses of afferent terminals in the subthalamic nucleus of the cat with a combined degeneration and horseradish peroxidase tracing method, J. Comp. Neurol. 265: 159.

    Article  PubMed  CAS  Google Scholar 

  • Mouroux, M., Hassani, O.-K., and Féger, J., 1997, Electrophysiological and Fos immunohistochemical evidence for the excitatory nature of the parafascicular projection to the globus pallidus, Neuroscience, 81:387.

    Article  PubMed  CAS  Google Scholar 

  • Nambu, A., and Llinas, R., 1997, Morphology of globus pallidus neurons: its correlation with electrophysiology in guinea pig brain slices, J. Comp. Neurol. 277:85.

    Article  Google Scholar 

  • Nambu, A., Takada, M., Inase, M., and Tokuno, H., 1996, Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area, J. Neurosci. 16:2671.

    PubMed  CAS  Google Scholar 

  • Neale, R., Gerhardt, S., and Liebman, J.M., 1984, Effects of dopamine agonists, catecholamine depletors, and cholinergic and GABAergic drugs on acute dyskinesias in squirrel monkeys, Psychopharmacology, 82:20.

    Article  PubMed  CAS  Google Scholar 

  • Ohishi, H., Akazawa, C., Shigemoto, R., Nakanishi, S., and Mizuno, N., 1995, Distribution of the mRNAs for L-2-amino-4-phosphonobutyrate-sensitive metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain, J. Comp. Neurol. 360:555.

    Article  PubMed  CAS  Google Scholar 

  • Ohishi, H., Shigemoto, R., Nakanishi, S., and Mizuno, N., 1993a, Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain: an in situ hybridization study, J. Comp. Neurol. 335:252.

    Article  PubMed  CAS  Google Scholar 

  • Ohishi, H., Shigemoto, R., Nakanishi, S., and Mizuno, N., 1993b, Distribution of the messenger RNA for a metabotropic glutamate receptor, mGluR2, in the central nervous system of the rat, Neuroscience, 53:1009.

    Article  PubMed  CAS  Google Scholar 

  • Pan, H.S., and Walters, J.R., 1988, Unilateral lesion of the nigrostriatal pathway decreases the firing rate and alters the firing pattern of globus pallidus neurons in the rat. Synapse, 2:650.

    Article  PubMed  CAS  Google Scholar 

  • Parent, A., Fortin, M., Côté, P.-Y., and Cicchetti, F., 1996, Calcium-binding proteins in primate basal ganglia, Neurosci. Res. 25:309.

    Article  PubMed  CAS  Google Scholar 

  • Parent, A., Hazrati, L.-N., 1995, Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo- cortical loop, Brain Res. Rev. 20:91.

    Article  PubMed  CAS  Google Scholar 

  • Parent, A. et al., 1990, The dopaminergic nigropallidal projection in primates: Distinct cellular origin and relative sparing in MPTP-treated monkeys, Adv. Neurol. 53:111.

    PubMed  CAS  Google Scholar 

  • Parent, A., and Smith Y., 1987a, Differential dopaminergic innervation of the two pallidal segments in the squirrel monkey (Saimiri sciureus), Brain Res. 426:397.

    Article  PubMed  CAS  Google Scholar 

  • Parent, A., and Smith, Y., 1987b, Organization of efferent projections of the subthalamic nucleus in the squirrel monkey as revealed by retrograde labeling methods, Brain Res. 436:296.

    Article  PubMed  CAS  Google Scholar 

  • Pasik, P., Pasik, T., Pecci-Saavedra, J., Holstein, G.R., and Yahr, M.D., 1984, Serotonin in pallidal neuronal circuits: an immunohistochemical study in monkeys, in: Advances in Neurology, Vol. 40, R.G. Hassler, and J.F. Christ, eds., Raven Press, New York.

    Google Scholar 

  • Petralia, R.S., Wang, Y.-X., Niedzielski, A.S., and Wenthold, R.J., 1996, The metabotropic glutamate receptors, mGluR2 and mGluR3, show unique postsynaptic, presynaptic and glial localizations, Neuroscience, 71:949.

    Article  PubMed  CAS  Google Scholar 

  • Plenz, D., and Kitai, S.T., 1999, A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus, Nature, 400:677.

    Article  PubMed  CAS  Google Scholar 

  • Porter, B., 1997, A review of intrathecal baclofen in the management of spasticity, Br. J. Nurs. 6:253.

    PubMed  CAS  Google Scholar 

  • Rafols, J.A., and Fox, C.A., 1976, The neurons in the primate subthalamic nucleus: a Golgi and electron microscopic study, J. Comp. Neurol. 168:75.

    Article  PubMed  CAS  Google Scholar 

  • Rajakumar, N., Rushlow, W., Naus, C.C.G., Elisevich, K., and Flumerfelt, B.A., 1994, Neurochemical compartmentalization of the globus pallidus in the rat: an immunocytochemical study of calcium-binding proteins, J. Comp. Neurol. 346:337.

    Article  PubMed  CAS  Google Scholar 

  • Reiner, A., and Carraway, R.E., 1987, Immunohistochemical and biochemical studies on Lys8-Asn9-neurotensin8-13 (LANT6)-related peptides in the basal ganglia of pigeons, turtles, and hamsters, J. Comp. Neurol. 257:453.

    Article  PubMed  CAS  Google Scholar 

  • Ruskin, D.N., and Marshall, J.F., 1995, Dl dopamine receptors influence Fos immunoreactivity in the globus pallidus and subthalamic nucleus of intact and nigrostriatal-lesioned rats, Brain Res. 703:156.

    Article  PubMed  CAS  Google Scholar 

  • Ruskin, D.N., and Marshall, J.F., 1997, Differing influences of dopamine agonists and antagonists of fos expression in identified populations of globus pallidus neurons, Neuroscience, 81:79.

    Article  PubMed  CAS  Google Scholar 

  • Sadikot, A.F., Parent, A., and Francois, C., 1992, Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections, J. Comp. Neurol. 315:137.

    Article  PubMed  CAS  Google Scholar 

  • Saint-Cyr, J.A., Ungerleider, L.G., and Desimone, R., 1990, Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey, J. Comp. Neurol. 298:129.

    Article  PubMed  CAS  Google Scholar 

  • Sato, F., Lavallée, P., Lévesque, M., and Parent, A., 2000, Single-axon tracing study of neurons of the external segment of the globus pallidus in primate, J. Comp. Neurol. 417:17.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D.D., Jane, D.E., and Monn, J.A., 1999, Pharmacological agents acting at subtypes of metabotropic glutamate receptors, Neuropharmacology, 38:1431.

    Article  PubMed  CAS  Google Scholar 

  • Shen, K.Z., and Johnson, S.W., 1997, Presynaptic GABAB and adenosine A, receptors regulate synaptic transmission to rat substantia nigra reticulata neurones, J. Physiol. 505:153.

    Article  PubMed  CAS  Google Scholar 

  • Shink, E., Bevan, M.D., Bolam, J.P., and Smith, Y., 1996, The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey, Neuroscience, 73:335.

    Article  PubMed  CAS  Google Scholar 

  • Shink, E., and Smith, Y., 1995, Differential synaptic innervation of neurons in the internal and external segments of the globus pallidus by the GABA- and glutamate-containing terminals in the squirrel monkey, J. Comp. Neurol. 358:119.

    Article  PubMed  CAS  Google Scholar 

  • Singh, R., 1990, GABAB receptors modulate glutamate release in the rat caudate and globus pallidus, Soc.Neurosci. Abstr. 16:1041.

    Google Scholar 

  • Smith, Y., Bevan, M.D., Shink, E., and Bolam, J.P., 1998a, Microcircuitry of the direct and indirect pathways of the basal ganglia, Neuroscience, 86:353.

    Article  PubMed  CAS  Google Scholar 

  • Smith, Y., and Bolam, J.P., 1990, The output neurons and the dopaminergic neurones of the substantia nigra receive a GABA-containing input from the globus pallidus in the rat, J. Comp. Neurol. 296:47.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J., and Bolam, J.P., 1991, Convergence of synaptic inputs from the striatum and the globus pallidus onto identified nigrocollicular cells in the rat: a double anterograde labelling study, Neuroscience, 44:45.

    Article  PubMed  CAS  Google Scholar 

  • Smith, J., Bolam, J.P., and von Krosigk, M., 1990, Topographical and synaptic organization of the GABA-containing pallidosubthalamic projection in the rat, Eur. J. Neurosci. 2:500.

    Article  PubMed  Google Scholar 

  • Smith, Y., Charara, A., Hanson, J.E., Paquet, M., and Levey, A.I., in press, GABAB and group I metabotropic glutamate receptors in the striatopallidal complex in primates, J. Anat. 196:555.

    Google Scholar 

  • Smith, I.D., and Grace, A.A., 1992, Role of the subthalamic nucleus in the regulation of nigral dopamine neuron activity, Synapse, 12:287.

    Article  PubMed  CAS  Google Scholar 

  • Smith, Y., and Kieval, J.Z., in press, Anatomy of striatal and extrastriatal dopamine systems in the basal ganglia, Trends Neurosci.

    Google Scholar 

  • Smith, Y., Lavoie, B., Dumas, J., and Parent, A., 1989, Evidence for a distinct nigropallidal dopaminergic projection in the squirrel monkey, Brain Res. 482:381.

    Article  PubMed  CAS  Google Scholar 

  • Smith, Y., and Parent, A., 1988, Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity, Brain Res. 453:353.

    Article  PubMed  CAS  Google Scholar 

  • Smith, Y., Shink, E., and Sidibé, M., 1998b, Neuronal circuitry and synaptic connectivity of the basal ganglia, Neurosurg. Clin. N. Am. 9:203.

    PubMed  CAS  Google Scholar 

  • Smith, Y., Wichmann, T., and DeLong, M.R., 1994, Synaptic innervation of neurones in the internal pallidal segment by the subthalamic nucleus and the external pallidum in monkeys, J. Comp. Neurol. 343:297.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi, P., Fritschy, J.-M., Benke, D., Roberts, J.D.B., and Sieghart, W., 1996, The y2 subunit of the GABAA receptor is concentrated in synaptic junctions containing the al and ß2/3 subunits in hippocampus, cerebellum and globus pallidus, Neuropharmacology, 35: 1425.

    Article  PubMed  CAS  Google Scholar 

  • Starr, M.S., 1995, Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson’s disease, Synapse, 19:264.

    Article  PubMed  CAS  Google Scholar 

  • Starr, P.A., Vitek, J.L., and Bakay, R.A.E., 1998, Ablative surgery and deep- brain stimulation for Parkinson’s disease, Neurosurgery, 43:989.

    Article  PubMed  CAS  Google Scholar 

  • Testa, C.M., Friberg, I.K., Weiss, S.W., and Standaert, D.G., 1998, Immunohistochemical localization of metabotropic glutamate receptors mGluRla and mGluR2/3 in the rat basal ganglia, J. Comp. Neurol. 390:5.

    Article  PubMed  CAS  Google Scholar 

  • Testa, C.M., Standaert, D.G., Young, A.B., and Penney, J.B., 1994, Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat, J. Neurosci. 14:3005.

    PubMed  CAS  Google Scholar 

  • Waldvogel, H.J., Fritschy, J.-M., Mohler, H., and Faull, R.L.M., 1998, GABAA receptors in the primate basal ganglia: An autoradiographic and a light and electron microscopic immunohistochemical study of the al and ß2,3 subunits in the baboon brain, J. Comp. Neurol. 397: 297.

    Article  PubMed  CAS  Google Scholar 

  • Weiner, D.M. et al., 1991, Dl and D2 dopamine receptor mRNA in rat brain, Proc. Natl. Acad. Sci. 88:1859.

    Article  PubMed  CAS  Google Scholar 

  • Whittier, J.R., and Mettler, F.A., 1949, Studies on the subthalamus of the rhesus monkey. II. Hyperkinesia and other physiologic effects of subthalamic lesions with special reference to the subthalamic nucleus of Luys, J. Comp. Neurol. 90:319.

    Article  PubMed  CAS  Google Scholar 

  • Wichmann, T., Bergman, H., and DeLong, M.R., 1994, The primate subthalamic nucleus. I. Functional properties in intact animals, J. Neurophysiol. 72:494.

    PubMed  CAS  Google Scholar 

  • Wichmann, T., and DeLong, M.R., 1996, Functional and pathophysiological models of the basal ganglia, Curr. Opin. Neurobiol. 6:751.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C.J., 1998, Basal ganglia, in: The Synaptic Organization of the Brain, Oxford University Press, New York.

    Google Scholar 

  • Wisden, W., Laurie, D.J., Monyer, H., and Seeburg, P.H., 1992, The distribution of 13 GABAA receptor subunit mRNAs in the rat brain, I. Telencephalon, diencephalon, mesencephalon, J. Neurosci. 12:1040.

    PubMed  CAS  Google Scholar 

  • Yelnik, J., and Percheron, G., 1979, Subthalamic neurons in primates: a quantitative and comparative analysis, Neuroscience, 4:1717.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J.-H., et al., 1991, Region-specific expression of the mRNAs encoding subunits (ß1, ß2 and ß3) of GABAA receptor in the rat brain, J. Comp. Neurol. 303:637.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, Y., Charara, A., Hanson, J.E., Hubert, G.W., Kuwajima, M. (2001). Chemical Anatomy and Synaptic Connectivity of the Globus Pallidus and Subthalamic Nucleus. In: Kultas-Ilinsky, K., Ilinsky, I.A. (eds) Basal Ganglia and Thalamus in Health and Movement Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1235-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1235-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5454-3

  • Online ISBN: 978-1-4615-1235-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics