Skip to main content

Soil Organic Matter and Aerobic Respiration

  • Chapter
Bottom Soils, Sediment, and Pond Aquaculture

Abstract

The primary source of organic matter in nature is photosynthesis by green plants. In photosynthesis, energy of sunlight is captured by plant pigments and used as an energy source to reduce inorganic carbon of CO2 to organic carbon of simple sugars. Solar energy is transformed by photochemical reactions in plant cells to chemical energy of chemical compounds. Oxygen is released as a by-product. The summary reaction is

$$ 6C{O_2} + 6{H_2}O\xrightarrow[{green\;plants}]{{light}}{C_6}{H_{{12}}}{O_2} $$
(5.1)

Chemoautotrophic bacteria also reduce carbon dioxide to organic matter. For example, nitrifying bacteria use energy released in the oxidation of ammonia to nitrate and reduce CO2 to organic carbon of carbohydrate. On a global basis, the amount of organic matter synthesized by chemoautotrophy is very small in comparison with the quantity produced by photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith, J. L., R. I. Papendick, D. F. Bezdicek, and J. M. Lynch. 1993. Soil organic matter dynamics and crop residue management. In Soil Microbial Ecology, F. B. Metting, Jr., ed., pp. 65–94. Marcel Dekker, New York.

    Google Scholar 

  2. Odum, E. P. Basic Ecology. 1983. CBS College Pub., Philadelphia.

    Google Scholar 

  3. Anderson, J. M. 1987. Production and decomposition in aquatic ecosystems and implications for aquaculture. In Detritus and Microbial Ecology in Aquaculture, D. J. W. Moriarty and R. S. V. Pullin, eds., pp. 123–147. ICLARM Conference Proceedings 14, International Center for Living Aquatic Resources Management, Manila, Phillipines.

    Google Scholar 

  4. Minderman, G. 1968. Addition, decomposition, and accumulation of organic matter in forests. J. Ecol. 56:355–362.

    Article  Google Scholar 

  5. Swift, M. J., O. W. Neal, and J. M. Anderson. Decomposition in Terrestrial Ecosystems. 1979. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  6. Stevenson, F., and E. T. Elliott. Methodologies for assessing the quantity and quality of soil organic matter. In Dynamics of Soil Organic Matter in Tropical Ecosystems. D. C. Coleman, J. M. Oades, and Goro Vehera, eds., pp. 173–199. University of Hawaii Press, Honolulu.

    Google Scholar 

  7. Metting, Jr., F. B. 1992. Structure and physiological ecology of soil microbial communities. In Soil Microbial Ecology, F. B. Metting, Jr., ed., pp. 3–25. Marcel Dekker, New York.

    Google Scholar 

  8. Alexander, M. Introduction to Soil Microbiology. 1977. John Wiley & Sons, New York.

    Google Scholar 

  9. Elliott, E. T. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci. Soc. Amer. J. 50:627–633.

    Article  Google Scholar 

  10. Gregorich, E. G., R. G. Kachanoski, and R. P. Voroney. 1989. Carbon mineralization in soil size fractions after various amounts of aggregate disruption. J. Soil Sci. 40:649–659.

    Article  CAS  Google Scholar 

  11. Cambardella, C. A., and E. T. Elliott. 1992. Particulate soil organic-matter changes across a grassland cultivation sequence. Soil Sci. Soc. Amer. J. 56:777–783.

    Article  Google Scholar 

  12. Parton, W. J., D. S. Schimel, C. V. Cole, and D. S. Ojima. 1987. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Division S-3—soil microbiology and biochemistry. Soil Sci. Soc. Amer. J. 51:1173–1179.

    Article  CAS  Google Scholar 

  13. Boyd, C. E. 1974. The utilization of nitrogen from the decomposition of organic matter in cultures of Scenedesmus dimorphus. Arch. Hydrobiol. 73:361–368.

    Google Scholar 

  14. Almazon, G., and C. E. Boyd. 1978. Effects of nitrogen levels on rates of oxygen consumption during decay of aquatic plants. Aquatic Bot. 5:119–126.

    Article  Google Scholar 

  15. Polisini, J. M., and C. E. Boyd. 1972. Relationships between cell wall fractions, nitrogen, and standing crop in aquatic macrophytes. Ecology 53:484–488.

    Article  CAS  Google Scholar 

  16. Bowman, G. T., and J. J. Delfino. 1980. Sediment oxygen demand techniques: A review and comparison of laboratory and in situ systems. Water Res. 14:491–499.

    Article  CAS  Google Scholar 

  17. Hargraves, B. T. 1969. Similarity of oxygen uptake by benthic communities. Limnol. Oceanogr. 14:801–805.

    Article  Google Scholar 

  18. Patmatmat, M. M., R. S. Jones, H. Samborn, and A. M. Bhagwat. Oxidation of Organic Matter in Sediments. 1973. Ecological Research Series, USEPA, EPA-660/3–73–005, U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  19. James, A. 1974. The measurement of benthal respiration. Water Res. 8:955–959.

    Article  Google Scholar 

  20. Howeler, R. H., and D. R. Bouldin. 1971. The diffusion and consumption of oxygen in submerged soils. Soil Sci. Soc. Amer. Proc. 35:202–208.

    Article  CAS  Google Scholar 

  21. Keen, W. H., and J. Gagliardi. 1981. Effect of brown bullheads on release of phosphorus in sediment and water systems. Prog. Fish-Cult. 43:183–185.

    Article  CAS  Google Scholar 

  22. Mezainis, V. E. 1977. Metabolic rates of pond ecosystems under intensive catfish cultivation. M.S. thesis, Auburn University, Ala.

    Google Scholar 

  23. Schroeder, G. L. 1975. Nighttime material balance for oxygen in fish ponds receiving organic wastes. Bamidgeh 27:65–74.

    Google Scholar 

  24. Shapiro, J., and O. Zur. 1981. A simple in situ method for measuring benthic respiration. Water Res. 15:283–285.

    Article  CAS  Google Scholar 

  25. Daniels, H. V., and C. E. Boyd. 1989. Chemical budgets for polyethylene-lined brackishwater ponds. J. World Aquaculture Soc. 20:53–60.

    Article  Google Scholar 

  26. Boyd, C. E., and D. Teichert-Coddington. 1994. Pond bottom soil respiration during fallow and culture periods in heavily-fertilized tropical fish ponds. 7. World Aquaculture Soc. 25:417–423.

    Article  Google Scholar 

  27. Schroeder, G. L. 1987. Carbon and nitrogen budgets in manured fish ponds on Israel’s coastal plain. Aquaculture 62:259–279.

    Article  Google Scholar 

  28. Gately, R. 1990. Organic carbon concentrations in bottom soils of ponds: Variability, changes over time, and effects of aeration. M.S. thesis, Auburn University, Ala.

    Google Scholar 

  29. Ayub, M., C. E. Boyd, andD. Teichert-Coddington. 1993. Effects of urea application, aeration, and drying on total carbon concentrations in pond bottom soils. Prog. Fish-Cult. 55:210–213.

    Article  Google Scholar 

  30. Ghosh, S. R., and A. R. Mohanty. 1981. Observations on the effect of aeration on mineralization of organic nitrogen in fish pond soil. Bamidgeh 33:50–56.

    Google Scholar 

  31. Schwartz, M. F., and C. E. Boyd. 1994. Effluent quality during harvest of channel catfish from watershed ponds. Prog. Fish-Cult. 56:25–32.

    Article  Google Scholar 

  32. Neess, J. C. 1946. Development and status of pond fertilization in Central Europe. Trans. Amer. Fish. Soc. 76:335–358.

    Article  Google Scholar 

  33. Wurtz, A. G. Methods of Treating the Bottom of Fish Ponds and Their Effects of Productivity. 1960. General Fisheries Council Mediterranean, Studies and Reviews, No. 11, FAO, Rome, Italy.

    Google Scholar 

  34. Boyd, C. E., and S. Pippopinyo. 1994. Factors affecting respiration in dry pond bottom soils. Aquaculture 120:283–294.

    Article  CAS  Google Scholar 

  35. Millar, C. E. Soil Fertility. 1955. John Wiley & Sons, New York.

    Google Scholar 

  36. Tucker, C. S. Organic Matter, Nitrogen, and Phosphorus Content of Sediments from Channel Catfish, Ictalurus Punctatus, Ponds. 1985. Research Report 10, Mississippi Agriculture and Forestry Experiment Station, Mississippi, State Univ., Mississippi State, Miss.

    Google Scholar 

  37. Zur. O. 1981. Primary production in intensive fish ponds and a complete organic carbon balance in the ponds. Aquaculture 23:197–210.

    Article  Google Scholar 

  38. Boyd, C. E. 1992. Shrimp pond bottom soil and sediment management. In Proceedings of the Special Session on Shrimp Farming, J. A. Wyban, ed., pp. 166–181. World Aquaculture Society, Baton Rouge, La.

    Google Scholar 

  39. Hopkins, J. S., P. A. Sandifer, and C. L. Browdy. 1994. Sludge management in intensive pond culture of shrimp: Effect of management regime on water quality, sludge characteristics, nitrogen extinction, and shrimp production. Aquacultural Eng. 13:11–30.

    Article  Google Scholar 

  40. Johnson, T. C., J. E. Evans, and S. J. Eisenreich. 1982. Total organic carbon in Lake Superior sediments: Comparisons with hemipelagic and pelagic marine environments. Limnol. Oceanogr. 27:481–491.

    Article  CAS  Google Scholar 

  41. Avnimelech, Y., J. R. McHenry, and J. D. Ross. 1984. Decomposition of organic matter in lake sediments. Environ. Sci. Technol. 18:5–11.

    Article  PubMed  CAS  Google Scholar 

  42. Avnimelech, Y. Reactions in Fish Pond Sediments as Inferred from Sediment Cores Data. 1984. Publication No. 341, Technion Israel Institute of Technology, Soils and Fertilizers Research Center, Haifa, Israel.

    Google Scholar 

  43. Boyd, C. E. 1970. Influence of organic matter on some characteristics of aquatic soils. Hydrobiologia 36:17–21.

    Article  Google Scholar 

  44. Boyd, C. E., P. Munsiri, and B. F. Hajek. 1994. Composition of sediment from intensive shrimp ponds in Thailand. World Aquaculture 25:53–55.

    Google Scholar 

  45. Boyd, C. E., M. E. Tanner, M. Madkour, and K. Masuda. 1994. Chemical characteristics of bottom soils from freshwater and brackishwater aquaculture ponds. J. World Aquaculture Soc. 25:517–534.

    Article  Google Scholar 

  46. Boyd, C. E. 1976. Chemical and textural properties of muds from different depths in ponds. Hydrobiologia 48:141–144.

    Article  CAS  Google Scholar 

  47. Boyd, C. E. 1977. Organic matter concentrations and textural properties from different depths in four fish ponds. Hydrobiologia 53:277–279.

    Article  Google Scholar 

  48. Waksman, S. A. Soil Microbiology. 1952. John Wiley & Sons, New York.

    Google Scholar 

  49. Boyd, C. E., and J. M. Lawrence. 1966. The mineral composition of several freshwater algae. Proc. Annual Conf. Southeastern Assoc. Game Fish Comm. 20:413–424.

    Google Scholar 

  50. Boyd, C. E. 1968. Fresh-water plants: A potential source of protein. Econ. Bot. 22:359–368.

    Article  Google Scholar 

  51. Boyd, C. E. 1973. Amino acid composition of freshwater algae. Arch. Hydrobiol. 72:1–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boyd, C.E. (1995). Soil Organic Matter and Aerobic Respiration. In: Bottom Soils, Sediment, and Pond Aquaculture. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1785-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1785-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5720-9

  • Online ISBN: 978-1-4615-1785-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics