Skip to main content

Food Webs and Nutrient Cycling in Soils: Interactions and Positive Feedbacks

  • Chapter
Food Webs

Abstract

Traditionally, food web studies have been part of what may be called the population-community approach to ecology (O’Neill et al., 1986). Ecosystem ecologists using the process-functional approach have usually neglected population interactions in food webs, despite the fact that a mechanistic understanding of ecosystem processes such as decomposition of organic matter and nutrient cycling requires studies of the organisms performing these processes (Moore et al., 1988; Verhoef and Brussaard, 1990). Until recently, there have been few published theoretical and empirical studies relating population dynamics and food webs to ecosystem processes (and vice versa) (DeAngelis, 1992; Jones and Lawton, 1995). A combination of the two approaches can be fruitful for solving many problems in basic and applied ecology, and studies of food webs are likely to become a substantial part of this growing industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ågren, G.I. and E. Bosatta. 1987. Theoretical analysis of the long-term dynamics of carbon and nitrogen in the soil. Ecology 68: 1181–1189.

    Article  Google Scholar 

  • Anderson, J.M. 1988. Spatiotemporal effects of invertebrates on soil processes. Biology and Fertility of Soils 6: 216–227.

    Article  CAS  Google Scholar 

  • Anderson, J.M. and P. Meson. 1984. Interactions between microorganisms and soil invertebrates in nutrient flux pathways of forest ecosystems. In Invertebrate-Microbial Interactions, eds. J.M. Anderson, A.D.M. Rayner, and D.W.H. Walton, pp. 59–88. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Beare, M.H., R.W. Pamerlee, P.F. Hendrix, W. Cheng, D.C. Coleman, and D.A. Crossley, Jr. 1992. Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosytems. Ecological Monographs 62: 569–591.

    Article  Google Scholar 

  • Begon, M., J.L. Harper, and C.R. Townsend. 1986. Ecology. Blackwell, Oxford, U.K.

    Google Scholar 

  • Bengtsson, J., D.W. Zheng, G.I. Agren, and T. Persson. 1995. Food webs in soil: An interface between population and ecosystem ecology. In Linking Species and Ecosystems, eds. C.G. Jones and J.H. Lawton. pp. 159–165. Chapman and Hall, New York.

    Chapter  Google Scholar 

  • Bianchi, T.S. and C.G. Jones. 1991. Density-dependent positive feedbacks between consumers and their resources. In Comparative Analyses of Ecosystems, eds. J. Cole, G. Lovett, and S. Findlay, pp. 331–340. Springer, New York.

    Chapter  Google Scholar 

  • Bosatta, E. and G.I. Agren. 1991. Dynamics of carbon and nitrogen in the soil: A generic theory. American Naturalist 138: 227–245.

    Article  Google Scholar 

  • Chapin, F.S. 1980. The mineral nutrition of wild plants. Annual Review of Ecology and Systematics 11: 233–260.

    Article  CAS  Google Scholar 

  • Clarholm, M. 1985. Possible roles of roots, bacteria, protozoa and fungi in supplying nitrogen to plants. In Ecological Interactions in Soil, eds. A.H. Fitter, D. Atkinson, D.J. Read, and M.B. Usher, pp. 355–366. Blackwell, Oxford, U.K.

    Google Scholar 

  • Coleman, D.C., R.E. Ingham, J.F. McClellan, and J.A. Trofymow. 1984. Soil nutrient transformations in the rhizosphere via animal-microbial interactions. In Invertebrate-Microbial In teractions, eds. J.M. Anderson, A.D.M. Rayner, and D.W.H. Walton, pp. 35–58. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Coleman, D.C., C.P.P. Reid, and C.V. Cole. 1983. Biological strategies of nutrient cycling in soil systems. Advances in Ecological Research 13: 1–55.

    Article  Google Scholar 

  • Darwin, C.R. 1881. The Formation of Vegetable Mould through the Action of Worms, with Observations of their Habits. Murray, London.

    Google Scholar 

  • DeAngelis, D.L. 1992. Dynamics of Nutrient Cycling and Food Webs. Chapman and Hall, London.

    Book  Google Scholar 

  • DeAngelis, D.L., P.J. Mulholland, A.V. Palumbo, A.D. Steinman, M.A. Huston, and J.W. Elwood. 1989. Nutrient dynamics and food web stability. Annual Review of Ecology and Systematics 20: 71–95.

    Article  Google Scholar 

  • DeAngelis, D.L., W.M. Post, and C.C. Travis. 1986. Positive Feedback in Natural Systems. Springer, New York.

    Book  Google Scholar 

  • Douce, G.K. and D.P. Webb. 1978. Indirect effects of soil invertebrates on litter decomposition: Elaboration via analysis of a tundra model. Ecological Modelling 4: 339–359.

    Article  Google Scholar 

  • Frank, D.A. and S.J. McNaughton. 1993. Evidence for the promotion of aboveground grassland by native herbivores in Yellowstone National Park. Oecologia 96: 157–161.

    Article  Google Scholar 

  • Hanlon, R.D.G. 1981. Influence of grazing by Collembola on the activity of senescent fungal colonies grown on media of different nutrient concentration. Oikos 36: 362–367.

    Article  Google Scholar 

  • Heal, O.W. and J. Dighton. 1985. Resource quality and trophic structure in the soil system. In Ecological Interactions in Soil, eds. A.H. Fitter, D. Atkinson, D.J. Read, and M.B. Usher, pp. 339–354. Blackwell, Oxford, U.K.

    Google Scholar 

  • Hobbie, S.E. 1992. Effects of plant species on nutrient cycling. Trends in Ecology and Evolution 7: 336–339.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, H.W., D.C. Coleman, E.R. Ingham, R.E. Ingham, E.T. Elliott, J.C. Moore, S.L. Rose, C.P.P. Reid, and C.R. Morley. 1987. The detrital food web in a shortgrass prairie. Biology and Fertility of Soils 3: 57–68.

    Article  Google Scholar 

  • Hyvönen, R. 1994. Interactions between nematodes and other soil organisms in coniferous forest soils in relation to acid/base and nutrient status. Ph.D. thesis. Department of Ecology and Environmental Research, Swedish University of Agricultural Sciences, Uppsala, Sweden.

    Google Scholar 

  • Hyvönen, R., S. Andersson, M. Clarholm, and T. Persson. 1994. Effects of lumbricids and enchytraeids on nematodes in limed and unlimed coniferous forest mor humus. Biology and Fertility of Soils 17:201–205.

    Google Scholar 

  • Ingham, E.R., J.A. Trofymow, R.N. Ames, H.W. Hunt, C.R. Morley, J.C. Moore, and D.C. Coleman. 1986. Trophic interactions and nitrogen cycling in semi-arid grassland soil. II. System responses to removal of different groups of soil microbes or fauna. Journal of Applied Ecology 23: 615–630.

    Article  CAS  Google Scholar 

  • Jones, C.G. and J.H. Lawton, eds. 1995. Linking Species and Ecosystems. Chapman and Hall, New York.

    Google Scholar 

  • Kretzschmar, A., ed. 1992. Earthworm ecology. Special issue. Soil Biology and Biochemistry 24:1193–1773.

    Google Scholar 

  • Laakso, J., J. Salminen, and H. Setälä. 1995. Effects of abiotic conditions and microarthropod predation on function and structure of soil animal communities. Acta Zoologica Fennica. 196: 162–167.

    Google Scholar 

  • Lavelle, P. 1988. Earthworm activities and the soil system. Biology and Fertility of Soils 6: 237–251.

    Article  Google Scholar 

  • McNaughton, S.J., R.W. Ruess, and S.W. Seagle. 1988. Large mammals and process dynamics in African ecosystems. BioScience 38: 794–800.

    Article  Google Scholar 

  • Menge, B.A. 1992. Community regulation. Under what conditions are bottom-up forces important on rocky shores? Ecology 73: 755–765.

    Article  Google Scholar 

  • Moore, J.C. and P.C. DeRuiter. 1991. Temporal and spatial heterogeneity of trophic interactions within below-ground food webs. Agriculture, Ecosystems and Environment 34: 371–397.

    Article  Google Scholar 

  • Moore, J.C., P.C. De Ruiter, and H.W. Hunt. 1993. Influence of productivity on the stability of real and model ecosystems. Science 261: 906–909.

    Article  PubMed  CAS  Google Scholar 

  • Moore, J.C. and H.W. Hunt. 1988. Resource compartmentation and the stability of real ecosystems. Nature 333: 261–263.

    Article  Google Scholar 

  • Moore, J.C., D.E. Walter, and H.W. Hunt. 1988. Arthropod regulation of micro-and mesobiota in below-ground detrital food webs. Annual Review of Entomology 33: 419–439.

    Article  Google Scholar 

  • O’Neill, R.V., D.L. DeAngelis, J.B. Waide, and T.F.H. Allen. 1986. A Hierarchical Concept of Ecosystems. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Pastor, J., R.J. Naiman, B. Dewey, and P. MacInnes. 1988. Moose, microbes, and the boreal forest. BioScience 38: 770–777.

    Article  Google Scholar 

  • Persson, T. 1989. Role of soil animals in N and C mineralization. Plant and Soil 81: 185–189.

    Google Scholar 

  • Persson, T., E. Bââth, M. Clarholm, H. Lundkvist, B.E. Söderström, and B. Sohlenius. 1980. Trophic structure, biomass dynamics and carbon metabolism of soil organisms in a Scots pine forest. Ecological Bulletin. 32: 419–459.

    CAS  Google Scholar 

  • Pimm, S L 1982. Food Webs. Chapman and Hall, London.

    Book  Google Scholar 

  • Polis, G.A. 1991. Complex trophic interactions in deserts: An empirical critique of food web theory. American Naturalist 138: 123–155.

    Article  Google Scholar 

  • Power, M. 1992. Top-down or bottom-up forces in food webs: Do plants have primacy? Ecology 73: 733–746.

    Article  Google Scholar 

  • Rusek, J. 1985. Soil microstructures-Contributions of specific organisms. Quaestiones Entomologicae 21: 497–514.

    Google Scholar 

  • Setälä, H. and V. Huhta. 1991. Soil fauna increase Betula pendula growth: Laboratory experiments with coniferous forest floor. Ecology 72: 665–671.

    Article  Google Scholar 

  • Setälä, H., M. Tyynismaa, E. Martikainen, and V. Huhta. 1991. Mineralization of C, N and P in relation to decomposer community structure in coniferous forest soil. Pedobiologia 35: 285–296.

    Google Scholar 

  • Standen, V. 1978. The influence of soil fauna on decomposition by micro-organisms in blanket bog litter. Journal of Animal Ecology 47: 25–38.

    Article  Google Scholar 

  • Stone, L. and R.S.J. Weissburd. 1992. Positive feedback in aquatic ecosystems. Trends in Ecology and Evolution 7: 263–267.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, S.Y. 1991. Indirect effects in community ecology: Their definition, study and importance. Trends in Ecology and Evolution 6: 206–210.

    Article  PubMed  CAS  Google Scholar 

  • Strong, D.R. 1992. Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology 73: 747–754.

    Article  Google Scholar 

  • Swift, M.J. 1976. Species diversity and the structure of microbial communities. In The Role of Terrestrial and Aquatic Organisms in Decomposition Processes, eds. J.M. Anderson, and A. Macfadyen, pp. 185–222. Blackwell, Oxford, U.K.

    Google Scholar 

  • Verhoef, H.A. and L. Brussaard. 1990. Decomposition and nitrogen mineralization in natural and agro-ecosystems: The contribution of soil animals. Biogeochemistry 11: 175–211.

    Article  Google Scholar 

  • Wardle, D.A. and G.W. Yeates. 1993. The dual importance of competition and predation as regulatory forces in terrestrial ecosystems: Evidence from decomposer food-webs. Oecologia 93: 303–306.

    Article  Google Scholar 

  • Wedin, D.A. and D. Tilman. 1990. Species effects on nutrient cycling: A test with perennial grasses. Oecologia 84: 433–441.

    Google Scholar 

  • Wilson, D.S. 1980. The Natural Selection of Populations and Communities. Benjamin/Cummings, Menlo Park, CA.

    Google Scholar 

  • Wilson, D.S. and E. Sober. 1989. Reviving the superorganism. Journal of Theoretical Biology 136: 337–356.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, J.B. and A.D.Q. Agnew. 1992. Positive-feedback switches in plant communities. Advances in Ecological Research 23: 263–336.

    Article  Google Scholar 

  • Wolters, V. 1991. Soil invertebrates-Effects on nutrient turnover and soil structure-A review.

    Google Scholar 

  • Zeitschrift für Pflanzenernährung and Bodenkunde 154:389–402.

    Google Scholar 

  • Zheng, D.W. 1993. Influence of soil food web structure on decomposition in terrestrial ecosystems. MS thesis. Department of Ecology and Environmental Research, Swedish University of Agricultural Sciences, Uppsala, Sweden.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bengtsson, J., Setälä, H., Zheng, D.W. (1996). Food Webs and Nutrient Cycling in Soils: Interactions and Positive Feedbacks. In: Polis, G.A., Winemiller, K.O. (eds) Food Webs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-7007-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-7007-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-7009-7

  • Online ISBN: 978-1-4615-7007-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics