Skip to main content

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

  • 107 Accesses

Abstract

The description of nuclear spin systems in liquid crystals under the influence of radiofrequency pulses requires a quantum mechanical formalism that specifies the state of a spin system by a state function or by a density operator. The density matrix formalism (Section 2.1) is introduced in this chapter. The full Hamiltonian H of a molecular system is usually complex. Fortunately, magnetic resonance experiments can be described by a much simplified spin Hamiltonian. The nuclear spin Hamiltonian acts only on the spin variables and is obtained by averaging the full Hamiltonian over the lattice coordinates. The lattice is defined as all degrees of freedom excluding those of a spin system. Various terms (e.g., chemical shift, dipole-dipole interaction) in the spin Hamiltonian are summarized in Section 2.2. In contrast to solids, intermolecular interactions are normally averaged to zero in liquid crystals due to rapid translational and rotational diffusion of molecules in liquid crystalline phases. Furthermore, partial motional averaging of the nuclear magnetic resonance (NMR) spectrum should be considered for the liquid crystalline molecules or for the solute molecules dissolved in liquid crystals. The partial averaging of the spin Hamiltonian is a result of anisotropic molecular tumbling motions. This is addressed in Section 2.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C.P. Slichter, Principles of Magnetic Resonance, 3rd Ed. (Springer-Verlag, New York, 1990).

    Google Scholar 

  2. M. Goldman, Quantum Description of High-Resolution NMR in Liquids (Clarendon Press, Oxford, 1988).

    Google Scholar 

  3. J.D. Memory, Quantum Theory of Magnetic Resonance Parameters (McGraw-Hill, New York, 1968).

    Google Scholar 

  4. A. Abragam, The Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961).

    Google Scholar 

  5. U. Haeberlen, High Resolution NMR in Solids: Selective Average (Academic Press, New York, 1976).

    Google Scholar 

  6. M. Mehring, Principles of High Resolution NMR in Solids, 2nd Ed. (Springer-Verlag, Berlin 1983).

    Book  Google Scholar 

  7. H.W. Spiess, NMR Basic Principles and Progress 15, 55 (1978).

    Google Scholar 

  8. M.E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).

    MATH  Google Scholar 

  9. D.M. Brink and G. R. Satchler, Angular Momentum (Claredon Press, Oxford, 1962).

    MATH  Google Scholar 

  10. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University, Princeton, NJ, 1957).

    MATH  Google Scholar 

  11. C. Zannoni, The Molecular Physics of Liquid Crystals, edited by G.R. Luckhurst and G.W. Gray (Academic Press, New York, 1979), Chap. 3.

    Google Scholar 

  12. M. Luzar, V. Rutar, J. Seliger, and R. Blinc, Ferroelectrics 58, 115 (1984).

    Article  Google Scholar 

  13. A. Pines and J.J. Chang, J. Am. Chem. Soc. 96, 5590 (1974);

    Article  Google Scholar 

  14. A. Pines and J.J. Chang, Phys. Rev. A 10, 946 (1974).

    Article  ADS  Google Scholar 

  15. M. Bloom, J.H. Davis, and M.I. Valic, Can. J. Phys. 58, 1510 (1980).

    Article  ADS  Google Scholar 

  16. R.R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press, Oxford, 1987).

    Google Scholar 

  17. A.J. Vega and Z. Luz, J. Chem. Phys. 86, 1803 (1987).

    Article  ADS  Google Scholar 

  18. S. Vega and A. Pines, J. Chem. Phys. 66, 5624 (1977);

    Article  ADS  Google Scholar 

  19. M. Mehring, E.K. Wolff, and M.E. Stoll, J. Magn. Reson. 37, 475 (1980).

    Google Scholar 

  20. K.R. Jeffrey, Bull. Magn. Reson. 3, 69 (1981).

    Google Scholar 

  21. J. Jeener and P. Broekaert, Phys. Rev. 157, 232 (1967).

    Article  ADS  Google Scholar 

  22. H.W. Spiess, J. Chem. Phys; 72, 6755 (1980).

    Article  ADS  Google Scholar 

  23. R.L. Void, W.H. Dickerson, and R.R. Void, J. Magn. Reson. 43, 213 (1981).

    Google Scholar 

  24. P.A. Beckmann, J.W. Emsley, G.R. Luckhurst, and D.L. Turner, Mol. Phys. 50, 699 (1983).

    Article  ADS  Google Scholar 

  25. S. Wimperis, J. Magn. Reson. 86, 46 (1990).

    Google Scholar 

  26. S. Wimperis, J. Magn. Reson. 83, 509 (1989);

    Google Scholar 

  27. S. Wimperis and G. Bodenhausen, Chem. Phys. Lett. 132, 194 (1986).

    Article  ADS  Google Scholar 

  28. G.L. Hoatson, J. Magn. Reson. 94, 152 (1992).

    Google Scholar 

  29. R.Y. Dong, Bull. Magn. Reson. 14, 134 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Dong, R.Y. (1994). The Dynamics of Nuclear Spins. In: Nuclear Magnetic Resonance of Liquid Crystals. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0208-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0208-7_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0210-0

  • Online ISBN: 978-1-4684-0208-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics