Skip to main content

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

  • 118 Accesses

Abstract

Chapter 2 focused on the evolution of a nuclear spin system without examining how it achieves thermal equilibrium with the lattice by energy exchange. The lattice consists of all degrees of freedom, except those of the nuclear spins, associated with molecular rotations and translations in physical systems such as liquid crystals. Spin-lattice relaxation describes how the system of nuclear spins evolves towards thermal equilibrium with the large heat reservoir, the lattice. The spin relaxation rates with which the nuclei arrive at their equilibrium magnetization may be experimentally determined. There is a well-defined connection between the relaxation rates and the dynamics of the lattice provided that the coupling interactions between the nuclear spin system and the lattice are known. Thus, nuclear spin relaxation may be used to study motional processes in molecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Bloch, Phys. Rev. 70, 460 (1946).

    Article  ADS  Google Scholar 

  2. A. G. Redfield, Adv. Magn. Reson. 1, 1 (1965).

    Google Scholar 

  3. A. Abragam, Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961).

    Google Scholar 

  4. A.G. Redfield, IBM J. Res. Dev. 1, 19 (1957).

    Article  Google Scholar 

  5. J.P. Jacobsen, H.K. Bildsoe, and K. Schaumberg, J. Magn. Reson. 23, 153 (1976).

    Google Scholar 

  6. K. Miller, P. Meier, and G. Kothe, Progr. NMR Spectrosc. 17, 211 (1985).

    Article  Google Scholar 

  7. R.K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953);

    Article  ADS  MATH  Google Scholar 

  8. F. Bloch, Phys. Rev. 102, 104 (1956).

    Article  ADS  MATH  Google Scholar 

  9. P.A. Beckmann, J.W. Emsley, G.R. Luckhurst, and D.L. Turner, Mol. Phys. 59, 97 (1986).

    Article  ADS  Google Scholar 

  10. P.A. Beckmann, J.W. Emsley, G.R. Luckhurst, and D.L. Turner, Mol. Phys. 50, 699 (1983).

    Article  ADS  Google Scholar 

  11. K.R. Jeffrey, Bull, of Magn. Reson. 3, 69 (1981).

    Google Scholar 

  12. M. Mehring, E.K. Wolff, and M.E. Stoll, J. Magn. Reson. 37, 475 (1980).

    Google Scholar 

  13. R.R. Void and R.L. Void, J. Chem. Phys. 66, 4018 (1977).

    Article  ADS  Google Scholar 

  14. J.H. Davis, K.R. Jeffrey, M. Bloom, M.I. Valic, and T.P. Higgs, Chem. Phys. Lett. 42, 390 (1976).

    Article  ADS  Google Scholar 

  15. S.B. Ahmad, K.J. Packer, and J.M. Ramsden, Mol. Phys. 33, 857 (1977).

    Article  ADS  Google Scholar 

  16. G. Bodenhausen, R.L. Void, and R.R. Void, J. Magn. Reson. 37, 93 (1980);

    Google Scholar 

  17. R.L. Void, R.R. Void, R. Poupko, and G. Bodenhausen, J.Magn. Reson. 38, 141 (1980).

    Google Scholar 

  18. R.Y. Dong (unpublished).

    Google Scholar 

  19. RR. Luyten, R.R. Void, and R.L. Void (unpublished).

    Google Scholar 

  20. R.Y. Dong and G.M. Richards, J. Chem. Soc. Faraday Trans. 2 84, 1053 (1988);

    Google Scholar 

  21. R.Y. Dong, L. Priesen, and G.M. Richards, Mol. Phys. (to be published).

    Google Scholar 

  22. T.M. Barbara, R.R. Void, and R.L. Void, J. Chem. Phys. 79, 6338 (1983);

    Article  ADS  Google Scholar 

  23. T.M. Barbara, R.R. Void, R.L. Void, and M.E. Neukert, J. Chem. Phys. 82, 1612 (1985).

    Article  ADS  Google Scholar 

  24. R.Y. Dong and G.M. Richards, Mol. Cryst. Liq. Cryst. 141, 335 (1986).

    Article  Google Scholar 

  25. R.Y. Dong, J. Magn. Reson. 66, 422 (1986);

    Google Scholar 

  26. R.Y. Dong, Liq. Cryst. 4, 505 (1989); R.Y. Dong and X. Shen, Phys. Rev. E. (in press).

    Article  Google Scholar 

  27. R.Y. Dong and G.M. Richards, J. Chem. Soc. Faraday Trans. 88, 1885 (1992).

    Article  Google Scholar 

  28. N.J. Heaton, Ph.D. thesis, Southampton (1986).

    Google Scholar 

  29. R.Y. Dong and G.W. O’Bannon, Mol. Cryst. Liq. Cryst. 209, 139 (1991).

    Article  Google Scholar 

  30. R.Y. Dong, G.M. Richards, J.S. Lewis, E. Tomchuk, and E. Bock, Mol. Cryst. Liq. Cryst. 144, 33 (1987).

    Article  Google Scholar 

  31. G.L. Hoatson, T.Y. Tse, and R.L. Void, J. Magn. Reson. 98, 342 (1992).

    Google Scholar 

  32. R.Y. Dong, J.W. Emsley, and K. Hamilton, Liq. Cryst. 5, 1019 (1989).

    Article  Google Scholar 

  33. J.M. Goetz, G.L. Hoatson, and R.L. Void, J. Chem. Phys. 97, 1306 (1992).

    Article  ADS  Google Scholar 

  34. D. Goldfarb, R.Y. Dong, Z. Luz, and H. Zimmermann, Mol. Phys. 54, 1185 (1985).

    Article  ADS  Google Scholar 

  35. R. Poupko, R.L. Void, and R.R. Void, J. Magn. Reson. 34, 67 (1979).

    Google Scholar 

  36. R.R. Void, Nuclear Magnetic Resonance of Liquid Crystals, edited by J.W. Emsley (D. Reidel Publishing Co., Dordrecht, 1985), Chap. 11.

    Google Scholar 

  37. B. Cabane and W.G. Clark, Phys. Rev. Lett. 25, 91 (1970);

    Article  ADS  Google Scholar 

  38. B. Cabane and W.G. Clark, Solid State Commun. 13, 129 (1973).

    Article  ADS  Google Scholar 

  39. R.Y. Dong, E. Tomchuk, J.J. Visintainer, and E. Bock, Mol. Cryst. Liq. Cryst. 33, 101 (1976).

    Article  Google Scholar 

  40. CG. Wade, Annu. Rev. Phys. Chem. 28, 47 (1977).

    Article  ADS  Google Scholar 

  41. P. Pincus, Solid State Commun. 7, 415 (1969).

    Article  ADS  Google Scholar 

  42. M. Weger and B. Cabane, J. Phys. C 30, 4–72 (1969).

    Google Scholar 

  43. R. Blinc, D. L. Hogenboom, D.E. O’Reilly, and E.M. Peterson, Phys. Rev. Lett. 23, 969 (1969).

    Article  ADS  Google Scholar 

  44. J.W. Doane and J.J. Visintainer, Phys. Rev. Lett. 23, 1421 (1969).

    Article  ADS  Google Scholar 

  45. R.Y. Dong and CF. Schwerdtfeger, Solid State Commun. 8, 707 (1970).

    Article  ADS  Google Scholar 

  46. S. Zumer and M. Vilfan, Phys. Rev. A 17, 424 (1978);

    Article  ADS  Google Scholar 

  47. S. Zumer and M. Vilfan, Mol. Cryst. Liq. Cryst. 70, 39 (1981).

    Article  Google Scholar 

  48. M. Vilfan and S. Zumer, Phys. Rev. A 21, 672 (1980).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Dong, R.Y. (1994). Nuclear Spin Relaxation Theory. In: Nuclear Magnetic Resonance of Liquid Crystals. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0208-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0208-7_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0210-0

  • Online ISBN: 978-1-4684-0208-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics