Skip to main content

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

  • 107 Accesses

Abstract

In the preceding chapter, it was found that the magnitudes of the motional frequency components at the Larmor frequency, at twice this frequency, and at zero frequency are important in NMR relaxation. Both spin-lattice and spin-spin relaxation rates are generally governed by random motion of spin-bearing molecules. Typically, a molecule remains in one state of motion for a short time (10-10–10-12 s). After this time, it suffers a collision with one of its neighbors, which changes its state of motion. When the molecule persists in some state of motion for a time of 10-10 s, its motion is expected to have frequency components ranging from zero to about 1010 Hz. Thus, these motional frequencies cover a wide range and contain the frequencies characteristic of NMR experiments. Several dynamic processes are recognized to cause spin relaxation in liquid crystals. The process known as director fluctuations is unique to liquid crystals and was first used to explain light scattering experiments in liquid crystals by Chatelain [6.1]. Other dynamic processes include molecular reorientation, translational motion and internal rotations as in normal liquids. Director fluctuations involve collective motions of a large number of molecules. In examining the mode spectrum of director fluctuations, the question may be asked whether or not a high-frequency cutoff is needed. If so, should the wavelengths of these modes correspond to a molecular length?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Chatelain, Acta Cryst. 1, 315 (1948).

    Article  Google Scholar 

  2. G.R. Luckhurst, J. Chem. Soc. Faraday Trans. 2 84, 961 (1988).

    Article  Google Scholar 

  3. P. Pincus, Solid State Commun. 7, 415 (1969).

    Article  ADS  Google Scholar 

  4. T. Lubensky, Phys. Rev. A 2, 2497 (1970).

    Article  ADS  Google Scholar 

  5. J.W. Doane and D.L. Johnson, Chem. Phys. Lett. 6, 291 (1970).

    Article  ADS  Google Scholar 

  6. F. Brochard, J. Phys. (Paris) 34, 411 (1973).

    Article  Google Scholar 

  7. R. Blinc, M. Luzar, M. Vilfan, and M. Burgar, J. Chem. Phys. 63, 3445 (1975).

    Article  ADS  Google Scholar 

  8. P. Ukleja, J. Pirs, and J.W. Doane, Phys. Rev. A 14, 414 (1976).

    Article  ADS  Google Scholar 

  9. J.H. Freed, J. Chem. Phys. 66, 4183 (1977).

    Article  ADS  Google Scholar 

  10. R.R. Void and R.L. Void, The Molecular Dynamics of Liquid Crystals, NATO Advanced Study Institute, II Ciocco (1989).

    Google Scholar 

  11. B.J. Gertner and K. Lindenberg, J. Chem. Phys. 94, 5143 (1991).

    Article  ADS  Google Scholar 

  12. T.E. Faber, Proc. R. Soc. London Ser. A 353, 277 (1977).

    Article  ADS  Google Scholar 

  13. S.H. Glarum and J.H. Marshall, J. Chem. Phys. 46, 55 (1967);

    Article  ADS  Google Scholar 

  14. G.R. Luckhurst and A. Sanson, Mol. Phys. 24, 1297 (1972).

    Article  ADS  Google Scholar 

  15. P.G. de Gennes, Compt. Rend. 266B, 15 (1968).

    Google Scholar 

  16. Orsay Liquid Crystal Group, Phys. Rev. Lett. 22, 1361 (1969).

    Article  Google Scholar 

  17. I. Haller and J.D. Litster, Phys. Rev. Lett. 25, 1550 (1970).

    Article  ADS  Google Scholar 

  18. M. Weger and B. Cabane, J. Phys. (Paris), Colloq. 30, C4–72 (1969).

    Article  Google Scholar 

  19. N. Bloembergen, E.M. Purcell, and R.V. Pound, Phys. Rev. 73, 679 (1948).

    Article  ADS  Google Scholar 

  20. J.W. Doane and J.J. Visintainer, Phys. Rev. Lett. 23, 1421 (1969).

    Article  ADS  Google Scholar 

  21. R. Blinc, D.L. Hogenbloom, D.E. O’Reilly, and E.M. Peterson, Phys. Rev. Lett. 23, 969 (1969).

    Article  ADS  Google Scholar 

  22. R.Y. Dong and CF. Schwerdtfeger, Solid State Commun. 9, 707 (1970).

    Article  Google Scholar 

  23. CE. Tarr, M.A. Nickerson, and CW. Smith, Appl. Phys. Lett. 17, 318 (1970).

    Article  ADS  Google Scholar 

  24. CR. Dybowski, B.A. Smith, and CG. Wade, J. Phys. Chem. 75, 3834 (1971).

    Article  Google Scholar 

  25. M. Vilfan, R. Blinc, and J.W. Doane, Solid State Commun. 11, 1073 (1972).

    Article  ADS  Google Scholar 

  26. F. Noack, Progr. NMR Spectrosc. 18, 171 (1986).

    Article  Google Scholar 

  27. R.R. Void, Nuclear Magnetic Resonance of Liquid Crystals, edited by J.W. Emsley (D. Reidel Publishing Co., Dordrecht, 1985), Chap. 11.

    Google Scholar 

  28. R. Köllner, K.H. Schweikert, F. Noack, and H. Zimmermann, Liq. Cryst. 13, 483 (1993).

    Article  Google Scholar 

  29. P.G. de Gennes, The Physics of Liquid Crystals (Oxford University Press, London, 1974);

    Google Scholar 

  30. E.B. Priestley, P.J. Wojtowicz, and P. Sheng, Introduction to Liquid Crystals (Plenum Press, New York, 1975).

    Google Scholar 

  31. M.J. Stephen and J.P. Straley, Rev. Mod. Phys. 46, 617 (1974).

    Article  ADS  Google Scholar 

  32. M. Vilfan, M. Kogoj, and R. Blinc, J. Chem. Phys. 86, 1055 (1987).

    Article  ADS  Google Scholar 

  33. R. Blinc, NMR Basic Principles Progr. 13, 97 (1976).

    Google Scholar 

  34. F. Noack, M. Notter, and W. Weiss, Liq. Cryst. 3, 907 (1988).

    Article  Google Scholar 

  35. J.W. Doane, CE. Tarr, and M.A. Nickerson, Phys. Rev. Lett. 33, 620 (1974).

    Article  ADS  Google Scholar 

  36. CF. Polnaszek and J.H. Freed, J. Phys. Chem. 79, 2283 (1975).

    Article  Google Scholar 

  37. M. Warner, Mol. Phys. 52, 677 (1984);

    Article  ADS  Google Scholar 

  38. L. Plomp, M. Schreurs, and J. Bulthuis, J. Chem. Phys. 88, 5202 (1988).

    Article  ADS  Google Scholar 

  39. R.L. Void, R.R. Void, and M. Warner, J. Chem. Soc. Faraday Trans. 2 84, 997 (1013).

    Google Scholar 

  40. R. Blinc, M. Vilfan, M. Luzar, J. Seliger, and V. Zagar, J. Chem. Phys. 68, 303 (1978).

    Article  ADS  Google Scholar 

  41. R.R. Void and R.L. Void, J. Chem. Phys. 88, 4655 (1988).

    Article  ADS  Google Scholar 

  42. P.G. de Gennes, Solid State Commun. 10, 753 (1972).

    Article  ADS  Google Scholar 

  43. R. Schaetzing and J.D. Litster, Advances in Liquid Crystals (Academic, New York, 1979), Vol. 4, p. 147.

    Google Scholar 

  44. I. Zupancic, V. Zagar, M. Rozmarin, I. Levstik, F. Kogovsek, and R. Blinc, Solid State Commun. 18, 1591 (1976).

    Article  ADS  Google Scholar 

  45. N.J. Heaton, Ph.D. thesis, University of Southampton, 1986.

    Google Scholar 

  46. R. Blinc, M. Luzar, M. Mali, R. Osredkar, J. Seliger, and M. Vilfan, J. Phys. (Paris) Colloq. 37, C3–73 (1976).

    Article  Google Scholar 

  47. D. Pusiol and F. Noack, Liq. Cryst. 5, 377 (1989).

    Article  Google Scholar 

  48. J.J. Visintainer, R.Y. Dong, E. Bock, E. Tomchuk, D.B. Dewey, A.-L. Kuo, and CG. Wade, J. Chem. Phys. 66, 3343 (1977).

    Article  ADS  Google Scholar 

  49. R.Y. Dong, J. Lewis, E. Tomchuk, and E. Bock, J. Chem. Phys. 69, 5314 (1978).

    Article  ADS  Google Scholar 

  50. T.M. Barbara, R.R. Void, R.L. Void, and M.E. Neubert, J. Chem. Phys. 82, 1612 (1985).

    Article  ADS  Google Scholar 

  51. R.Y. Dong, J.W. Emsley, and K. Hamilton, Liq. Cryst. 5, 1019 (1989).

    Article  Google Scholar 

  52. F. Noack, private communications; K.H. Schweikert and F. Noack, Mol. Cryst. Liq. Cryst. 212, 33 (1992).

    Article  Google Scholar 

  53. B. Cabane and W.G. Clark, Phys. Rev. Lett. 25, 91 (1970);

    Article  ADS  Google Scholar 

  54. B. Cabane and W.G. Clark, Solid State Commun. 13, 129 (1973).

    Article  ADS  Google Scholar 

  55. R.L. Void and R.R. Void, Isr. J. Chem. 23, 315 (1983).

    Google Scholar 

  56. W.H. Dickerson, R.R. Void, and R.L. Void, J. Phys. Chem. 87, 166 (1983).

    Article  Google Scholar 

  57. L.S. Selwyn, R.R. Void, and R.L. Void, Mol. Phys. 55, 287 (1985).

    Article  ADS  Google Scholar 

  58. P.R. Luvten, R.R. Void, and R.L. Void, J. Phys. Chem. 89, 545 (1985).

    Article  Google Scholar 

  59. L. Plomp and J. Bulthuis, Liq. Cryst. 3, 927 (1988).

    Article  Google Scholar 

  60. D.A. Ikenberry, Ph.D. thesis, UCSD (1989).

    Google Scholar 

  61. L. Plomp, A.C. Lohman, and J. Bulthuis, J. Chem. Phys. 84, 6591 (1986).

    Article  ADS  Google Scholar 

  62. R.L. Void and R.R. Void, The Molecular Dynamics of Liquid Crystals, NATO Advanced Study Institute, II Ciocco (1989).

    Google Scholar 

  63. L.D. Landau, Collected Papers of L.D. Landau, edited by Ter Haar (Gordon and Breach, New York, 1965).

    Google Scholar 

  64. P.G. de Gennes, Phys. Lett. 30a, 454 (1969);

    ADS  Google Scholar 

  65. P.G. de Gennes, Mol. Cryst. Liq. Cryst. 12, 193 (1971).

    Article  Google Scholar 

  66. G.R. Luckhurst, Nuclear Magnetic Resonance of Liquid Crystals, edited by J. W. Emsley (D. Reidel Publishing Co., Dordrecht, 1985), Chap. 4.

    Google Scholar 

  67. Y. Poggi, J. C. Filippini, and R. Aleonard, Phys. Lett. 57a, 53 (1976).

    ADS  Google Scholar 

  68. T.W. Stinson and J.D. Litster, Phys. Rev. Lett. 25, 503 (1970);

    Article  ADS  Google Scholar 

  69. T.W. Stinson and J.D. Litster, Phys. Rev. Lett. 30, 688 (1973).

    Article  ADS  Google Scholar 

  70. S.K. Ghosh, E. Tettamanti, and P.L. Indovina, Phys. Rev. Lett. 29, 638 (1972).

    Article  ADS  Google Scholar 

  71. R.Y. Dong, M. Wiszniewska, E. Tomchuk, and E. Bock, Can. J. Phys. 52, 766 (1974);

    ADS  Google Scholar 

  72. R.Y. Dong, E. Tomchuk, and E. Bock, Can. J. Phys. 53, 610 (1975).

    Article  ADS  Google Scholar 

  73. J.J. Visintainer, E. Bock, R.Y. Dong, and E. Tomchuk, Can. J. Phys. 54, 2282 (1976).

    Article  ADS  Google Scholar 

  74. R.Y. Dong, E. Tomchuk, J.J. Visintainer, and E. Bock, Mol. Cryst. Liq. Cryst. 33, 101 (1976).

    Article  Google Scholar 

  75. R.Y. Dong, M. Wiszniewska, E. Tomchuk, and E. Bock, Can. J. Phys. 52, 1331 (1974).

    ADS  Google Scholar 

  76. Lin Lei, J. Physique 43, 251 (1982).

    Article  Google Scholar 

  77. R.Y. Dong and E. Tomchuk, Phys. Rev. A 17, 2062 (1978);

    Article  ADS  Google Scholar 

  78. R.Y. Dong, Phys. Rev. A 21, 1064 (1980).

    Article  ADS  Google Scholar 

  79. G.S. Attard, P.A. Beckmann, J.W. Emsley, G.R. Luckhurst, and D.L. Turner, Mol. Phys. 45, 1125 (1982).

    Article  ADS  Google Scholar 

  80. J.W. Emsley, C.T. Imrie, G.R. Luckhurst, and R.D. Newmark, Mol. Phys. 63, 317 (1988).

    Article  ADS  Google Scholar 

  81. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, Cambridge, 1977).

    Google Scholar 

  82. J. Zadoc-Kahn, Compt. Rend. 91, 1002 (1930).

    Google Scholar 

  83. J.F. Martin, R.R. Void, and R.L. Void, J. Chem. Phy. 80, 2337 (1984).

    Google Scholar 

  84. G.S. Attard, J.W. Emsley, and G.R. Luckhurst, Mol. Phys. 48, 639 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Dong, R.Y. (1994). Director Fluctuations and Spin Relaxation. In: Nuclear Magnetic Resonance of Liquid Crystals. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0208-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0208-7_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0210-0

  • Online ISBN: 978-1-4684-0208-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics