Skip to main content

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

  • 105 Accesses

Abstract

Nuclear magnetic interactions are time dependent since they are modulated by changes in the position and/or the orientation of a molecule. These molecular motions depend on the intermolecular, and to some extent, intramolecular forces. Molecular forces are largely governed by electrostatic intermolecular potentials. Therefore, information concerning intermolecular forces and dynamics may be obtained through studying the time-dependent characteristics of the nuclear spin. Molecular dynamics is a very complicated process even in normal liquids. In liquid crystals, where the molecules and the medium are highly anisotropic, the dynamic processes become extremely difficult to investigate. However, it is possible to treat the position or the orientation of a rigid molecule as a random variable and describe the dynamics of molecular motion by a stochastic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.L. Nordio and P. Busolin, J. Chem. Phys 55, 5485 (1971).

    Article  ADS  Google Scholar 

  2. P.L. Nordio, G. Rigatti, and U. Segre, J. Chem. Phys. 56, 2117 (1972);

    Article  ADS  Google Scholar 

  3. P.L. Nordio, G. Rigatti, and U. Segre, Mol. Phys. 25, 129 (1973).

    Article  ADS  Google Scholar 

  4. S.H. Glarum and J.H. Marshall, J. Chem. Phys. 44, 2884 (1966);

    Article  ADS  Google Scholar 

  5. S.H. Glarum and J.H. Marshall, J. Chem. Phys. 46, 55 (1967).

    Article  ADS  Google Scholar 

  6. G.R. Luckhurst and A. Sanson, Mol. Phys. 24, 1297 (1972).

    Article  ADS  Google Scholar 

  7. C.C. Wang and R. Pecora, J. Chem. Phys. 72, 5333 (1980).

    Article  ADS  Google Scholar 

  8. L.S. Selwyn, R.L. Void, and R.R. Void, J. Chem. Phys. 80, 5418 (1984).

    Article  ADS  Google Scholar 

  9. R.Y. Dong and K.R. Sridharan, J. Chem. Phys. 82, 4838 (1985).

    Article  ADS  Google Scholar 

  10. C.F. Polnaszek, G.V. Bruno, and J.H. Freed, J. Chem. Phys. 58, 3185 (1973).

    Article  ADS  Google Scholar 

  11. C.F. Polnaszek and J.H. Freed, J.Phys. Chem. 79, 2283 (1975).

    Article  Google Scholar 

  12. R.R. Void and R.L. Void, J. Chem. Phys. 88, 1443 (1988).

    Article  ADS  Google Scholar 

  13. B. Cvikl and U. Dahlborg (private communcation).

    Google Scholar 

  14. P.L. Nordio, The Molecular Physics of Liquid Crystals, edited by G.R. Luckhurst and G.W. Gray (Academic Press, London, 1979), Chap. 18.

    Google Scholar 

  15. J.B. Petersen, Electron Spin Relaxation in Liquids, edited by L.T. Muus and P.W. Atkins (Plenum Press, New York, 1972).

    Google Scholar 

  16. J.H. Freed, J. Chem. Phys. 66, 4183 (1977).

    Article  ADS  Google Scholar 

  17. P.A. Beckmann, J.W. Emsley, G.R. Luckhurst, and D.L. Turner, Mol. Phys. 50, 699 (1983).

    Article  ADS  Google Scholar 

  18. A. Abragam, Principles of Nuclear Magnetic Resonance (Oxford University, New York, 1961).

    Google Scholar 

  19. G. Agostini, P.L. Nordio, G. Rigatti, and U. Segre, Atti. Accad. Naz. Lincei Sez. 2a, 13, 1 (1975).

    Google Scholar 

  20. P.L. Nordio and U. Segre, J. Magn. Reson. 27, 465 (1977).

    Google Scholar 

  21. C. Zannoni, Mol. Phys. 38, 1813 (1979);

    Article  ADS  Google Scholar 

  22. C. Zannoni, Mol. Phys. 42, 1303 (1981).

    Article  ADS  Google Scholar 

  23. C. Zannoni, A. Arcioni, and P. Cavatorta, Chem. Phys. Lipids 32, 179 (1983).

    Article  Google Scholar 

  24. P. Pershan, The Molecular Physics of Liquid Crystals, edited by G.R. Luckhurst and G.W. Gray (Academic Press, London, 1979), Chap. 17.

    Google Scholar 

  25. K. Miyano, J. Chem. Phys. 69, 4807 (1978);

    Article  ADS  Google Scholar 

  26. J.G.P. Dalmolen and W.H. de Jeu, J. Chem. Phys. 78, 7353 (1983).

    Article  ADS  Google Scholar 

  27. D.E. Woessner, J. Chem. Phys. 36, 1 (1962);

    Article  ADS  Google Scholar 

  28. W.T. Huntress, Jr., Adv. Magn. Reson. 4, 1 (1970).

    Google Scholar 

  29. I. Dozov, N. Kirov, and M.P. Fontana, J. Chem. Phys. 81, 2585 (1984);

    Article  ADS  Google Scholar 

  30. N. Kirov, I. Dozov, and M.P. Fontana, J. Chem. Phys. 83, 5267 (1985).

    Article  ADS  Google Scholar 

  31. R.Y. Dong, J. Chem. Phys. 88, 3962 (1988).

    Article  ADS  Google Scholar 

  32. P.A. Beckmann, J.W. Emsley, G.R. Luckhurst, and D.L. Turner, Mol. Phys. 59, 97 (1986).

    Article  ADS  Google Scholar 

  33. R.Y. Dong, Mol. Cryst. Liq. Cryst. 141, 349 (1986).

    Article  Google Scholar 

  34. P.L. Nordio and U. Segre, Chem. Phys. 11, 57 (1975).

    Article  ADS  Google Scholar 

  35. J.M. Bernassau, E.P. Black, and D.M. Grant, J. Chem. Phys. 76, 253 (1982).

    Article  ADS  Google Scholar 

  36. I. Dozov, N. Kirov, and B. Petroff, Phys. Rev. A. 36, 2870 (1987).

    Article  ADS  Google Scholar 

  37. R. Tarroni and C. Zannoni, J. Chem. Phys. 95, 4550 (1991).

    Article  ADS  Google Scholar 

  38. J. Bulthuis and L. Plomp, J. Phys. France 51, 2581 (1990).

    Article  Google Scholar 

  39. S.J. Opella and M.H. Frey, J. Am. Chem. Soc. 101, 5856 (1979).

    Article  Google Scholar 

  40. R.J. Wittebort, R. Subramanian, N.P. Kulshreshtha, and D.B. Dupre, J. Chem. Phys. 83, 2457 (1985).

    Article  ADS  Google Scholar 

  41. M.P. Warchol and W.E. Vaughan, Adv. Mol. Relax. Process 13, 317 (1978).

    Article  Google Scholar 

  42. A.N. Kutzentzov, J. Struct. Chem. 11, 488 (1970).

    Article  Google Scholar 

  43. R.Y. Dong, Phys. Rev. A 42, 858 (1990).

    Article  ADS  Google Scholar 

  44. G.L. Hoatson, T.Y. Tse, and R.L. Void, J. Magn. Reson. 98, 342 (1992).

    Google Scholar 

  45. J.M. Goetz, G.L. Hoatson, and R.L. Void, J. Chem. Phys. 97, 1306 (1992).

    Article  ADS  Google Scholar 

  46. R. Blinc, J. Dolinsek, M. Luzar, and J. Selinger, Liq. Cryst. 3, 663 (1988).

    Article  Google Scholar 

  47. G. Cvikl, U. Dahlborg, M. Cepic, J.Peternelj, I. Jencic, B. Glumac, and M. Davidovic, Physics Scripta 44, 63 (1991).

    Article  ADS  Google Scholar 

  48. R.E. London and J. Avitabile, J. Am. Chem. Soc. 100, 7159 (1978).

    Article  Google Scholar 

  49. R.J. Wittebort and A. Szabo, J. Chem. Phys. 69, 1722 (1978).

    Article  ADS  Google Scholar 

  50. R.Y. Dong, Bull. Magn. Reson. 9, 29 (1987).

    Google Scholar 

  51. CG. Wade, Annu. Rev. Phys. Chem. 28, 47 (1977);

    Article  ADS  Google Scholar 

  52. R.Y. Dong, Isr. J. Chem. 23, 370 (1983).

    Google Scholar 

  53. R.Y. Dong, Liq. Cryst. 4, 505 (1989).

    Article  Google Scholar 

  54. D. Goldfarb, R.Y. Dong, Z. Luz, and H. Zimmermann, Mol. Phys. 54, 1185 (1985).

    Article  ADS  Google Scholar 

  55. D. Goldfarb, Z. Luz, and H. Zimmermann, J. Phys. Prance 42, 1303 (1981).

    Article  Google Scholar 

  56. R.Y. Dong and G.M. Richards, Mol. Cryst. Liq. Cryst. 141, 335 (1986).

    Article  Google Scholar 

  57. R.Y. Dong, J.W. Emsley, and K. Hamilton, Liq. Cryst. 5, 1019 (1989).

    Article  Google Scholar 

  58. R.Y. Dong and G.M. Richards, J. Chem. Soc. Faraday Trans. 2, 84, 1053 (1988).

    Article  Google Scholar 

  59. R.Y. Dong and G.M. Richards, J. Chem. Soc. Faraday Trans. 88, 1885 (1992).

    Article  Google Scholar 

  60. G.M. Richards and R.Y. Dong, Liq. Cryst. 5, 1011 (1989).

    Article  Google Scholar 

  61. B.R. Ratna and R. Shashidhar, Mol. Cryst. Liq. Cryst. 42, 185 (1977);

    Article  Google Scholar 

  62. M. Davies, R. Moutran, A.H. Price, M.S. Beevers, and G. Williams, J. Chem. Soc. Faraday Trans. 2, 72, 1447 (1976).

    Google Scholar 

  63. M. Ricco and M.P. Fontana, Phase Transitions in Liquid Crystals, edited by S. Martellucci (Plenum Press, New York, 1991).

    Google Scholar 

  64. R.Y. Dong, L. Friesen, and G.M. Richards, Mol. Phys. (to be published) .

    Google Scholar 

  65. G.J. Krüger, Phys. Rep. 82, 229 (1982).

    Article  ADS  Google Scholar 

  66. G.J. Krüger and H. Spiesecke, Z. Naturforsch. 289, 964 (1973);

    ADS  Google Scholar 

  67. M.E. Moseley and A. Lowenstein, Mol. Cryst. Liq. Cryst. 90, 117 (1982);

    Article  Google Scholar 

  68. M.E. Moseley and A. Lowenstein, Mol. Cryst. Liq. Cryst. 95, 51 (1983).

    Article  Google Scholar 

  69. P. Ukleja and J.W. Doane, Ordering in Two Dimensions, edited by Sinha (Elsevier North-Holland, Holland, 1980), p. 427.

    Google Scholar 

  70. K.-S. Chu and D. S. Moroi, J. Phys. (Paris) Colloq. 36, C1–99 (1975).

    Article  Google Scholar 

  71. A.J. Leadbetter, F.P. Temme, A. Heidemann, and W.S. Howells, Chem. Phys. Lett. 34, 363 (1975).

    Article  ADS  Google Scholar 

  72. F. Rondelez, Solid State Commun. 14, 815 (1974).

    Article  ADS  Google Scholar 

  73. R. Blinc, J. Pirš, and I. Zupančič, Phys. Rev. Lett. 30, 546 (1973);

    Article  ADS  Google Scholar 

  74. I. Zupančič, J. Pirš, M. Luzar, R. Blinc, and J.W. Doane, Solid State Commun. 15, 227 (1974).

    Article  ADS  Google Scholar 

  75. F. Noack, Mol. Cryst. Liq. Cryst. 113, 247 (1984).

    Article  Google Scholar 

  76. R.Y. Dong, D. Goldfarb, M.E. Moseley, Z. Luz, and H. Zimmermann, J. Phys. Chem. 88, 3148 (1984).

    Article  Google Scholar 

  77. H.C. Torrey, Phys. Rev. 92, 962 (1953);

    Article  ADS  MATH  Google Scholar 

  78. H.C. Torrey, Phys. Rev. 96, 690 (1954).

    Article  ADS  Google Scholar 

  79. H.A. Resing and H.C. Torrey, Phys. Rev. 131, 1102 (1963).

    Article  ADS  Google Scholar 

  80. G.J. Krüger, Z. Naturforsch. Teil A 24, 560 (1969).

    Google Scholar 

  81. G.J. Krüger, H. Spiesecke, R. Van Steenwinkel, and F. Noack, Mol. Cryst. Liq. Cryst. 40, 103 (1977).

    Article  Google Scholar 

  82. W. Wölfel, F. Noack, and M. Stohrer, Z. Naturforsch Teil A 30, 437 (1975).

    ADS  Google Scholar 

  83. R. Blinc, M. Vilfan, M. Luzar, J. Seliger, and V. Žagar, J. Chem. Phys. 68, 303 (1978).

    Article  ADS  Google Scholar 

  84. F. Noack, Prog. N.M.R. Spectroscopy 18, 171 (1986).

    Article  Google Scholar 

  85. E. T. Samulski, C.R. Dybowski, and C.G. Wade, Phys. Rev. Lett. 29, 340 (1972);

    Article  ADS  Google Scholar 

  86. E. T. Samulski, C.R. Dybowski, and C.G. Wade, Phys. Rev. Lett. 29, 1050 (1972);

    Article  ADS  Google Scholar 

  87. B.M. Fung, C.G. Wade, and R.D. Orwoll, J. Ghem. Phys. 64, 148 (1976).

    Article  ADS  Google Scholar 

  88. J.S. Lewis, E. Tomchuk, and E. Bock, Mol. Cryst. Liq. Cryst. 97, 387 (1983).

    Article  Google Scholar 

  89. J.F. Harmon and B.H. Muller, Phys. Rev. 182, 400 (1969).

    Article  ADS  Google Scholar 

  90. S. Žumer and M. Vilfan, Phys. Rev. A 17, 424 (1978).

    Article  ADS  Google Scholar 

  91. M. Vilfan and S. Žumer, Phys. Rev. A 21, 672 (1980).

    Article  ADS  Google Scholar 

  92. S. Žumer and M. Vilfan, Phys. Rev. A 28, 3070 (1983).

    Article  ADS  Google Scholar 

  93. K.H. Schweikert and F. Noack, Z. Naturforsch. Teil A 44, 597 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Dong, R.Y. (1994). Rotational and Translational Dynamics. In: Nuclear Magnetic Resonance of Liquid Crystals. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0208-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0208-7_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0210-0

  • Online ISBN: 978-1-4684-0208-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics