Skip to main content

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

  • 103 Accesses

Abstract

In Chapter 4, the effects of internal motion on averaging the local spin interaction tensors to give spectral splittings and/or shifts in NMR spectra of liquid crystals were considered. The analysis of dynamical properties in molecular systems with many degrees of freedom is more complex than that of the equilibrium properties. Spin relaxation characteristics of nuclear spin systems are influenced by internal degrees of freedom within spin-bearing molecules. Although internal rotations about C-C bonds in macromolecules dissolved in solution have been studied, both theoretically and experimentally, since the 1970s [8.1–8.6], the task of formulating spin relaxation theories for liquid crystals is just beginning and is a formidable one. Drastic assumptions are made in order to simplify the treatment of many internal degrees of freedom in mesogens reorienting in anisotropic mesophases. Only when sufficient spectral parameters are obtained from relaxation behaviors of nuclei like 13C and 2H can there be hope of checking or removing some of the crude assumptions used in the spin relaxation theory. In spite of the limitations in these relaxation theories, there is evidence that NMR can reveal information not available from other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Wallach, J. Chem. Phys. 47, 5258 (1967).

    Article  ADS  Google Scholar 

  2. Y.K. Levine, N.J.M. Birdsall, A.G. Lee, J.C. Metcalfe, P. Partington, and G.C.K. Roberts, J. Chem. Phys. 60, 2890 (1974).

    Article  ADS  Google Scholar 

  3. R.E. London and J. Avitabile, J. Am. Chem. Soc. 99, 7765 (1977);

    Article  Google Scholar 

  4. R.E. London and J. Avitabile, J. Am. Chem. Soc. 100, 7159 (1978).

    Article  Google Scholar 

  5. R.J. Wittebort and A. Szabo, J. Chem. Phys. 69, 1722 (1978).

    Article  ADS  Google Scholar 

  6. A. Tsutsumi, Mol. Phys. 37, 111 (1979).

    Article  ADS  Google Scholar 

  7. O. Edholm and C. Blomberg, Chem. Phys. 42, 449 (1979).

    Article  Google Scholar 

  8. P.A. Beckmann, J.W. Emsley, G.R. Luckhurst, and D.L. Turner, Mol. Phys. 54, 97 (1986).

    Article  ADS  Google Scholar 

  9. R.Y. Dong, Mol. Cryst. Liq. Cryst. 141, 349 (1986).

    Article  Google Scholar 

  10. J.W. Emsley, G.R. Luckhurst, and C.P. Stockley, Proc. R. Soc. London Ser. A. 381, 117 (1982).

    Article  ADS  Google Scholar 

  11. P.J. Flory, Statistical Mechanics of Chain Molecules (Interscience, New York, 1969).

    Google Scholar 

  12. R.Y. Dong, J. Chem. Phys. 88, 3962 (1988).

    Article  ADS  Google Scholar 

  13. A. Ferrarini, G.J. Moro, and P.L. Nordio, Liq. Cryst. 8, 593 (1990).

    Article  Google Scholar 

  14. A. Ferrarini, G. Moro, P.L. Nordio, and A. Polimeno, Chem. Phys. Lett. 151, 531 (1988);

    Article  ADS  Google Scholar 

  15. A. Ferrarini, P.L. Nordio, G.J. Moro, R.H. Crepeau, and J.H. Freed, J. Chem. Phys. 91, 5707 (1989).

    Article  ADS  Google Scholar 

  16. R.Y. Dong and G.M. Richards, Chem. Phys. Lett. 171, 389 (1990).

    Article  ADS  Google Scholar 

  17. R.Y. Dong, J. Lewis, E. Tomchuk, and E. Bock, J. Chem. Phys. 69, 5314 (1978).

    Article  ADS  Google Scholar 

  18. T.M. Barbara, R.R. Void, and R.L. Void, J. Chem. Phys. 79, 6338 (1983);

    Article  ADS  Google Scholar 

  19. T.M. Barbara, R.R. Void, R.L. Void, and M.E. Neubert, J. Chem. Phys. 82, 1612 (1985).

    Article  ADS  Google Scholar 

  20. D. Goldfarb, R.Y. Dong, Z. Luz, and H. Zimmermann, Mol. Phys. 54, 1185 (1985).

    Article  ADS  Google Scholar 

  21. J.S. Lewis, E. Tomchuk, H.M. Hutton, and E. Bock, J. Chem. Phys. 78, 632 (1983);

    Article  ADS  Google Scholar 

  22. H.M. Hutton, E. Bock, E. Tomchuk, and R.Y. Dong, J. Chem. Phys. 68, 940 (1978).

    Article  ADS  Google Scholar 

  23. J.S. Lewis, J. Peeling, E. Tomchuk, W. Danchura, J. Bozek, H.M. Hutton, and E. Bock, Mol. Cryst. Liq. Cryst. 144, 57 (1987).

    Article  Google Scholar 

  24. J.P. Caniparoli, A. Grassi, and C. Chachaty, Mol. Phys. 63, 419 (1988).

    Article  ADS  Google Scholar 

  25. D.E. Woessner, J. Chem. Phys. 36, 1 (1962).

    Article  ADS  Google Scholar 

  26. M. Baldo and A. Grassi, Magn. Reson. Chem. 27, 533 (1989).

    Article  Google Scholar 

  27. R.Y. Dong, Phys. Rev. A 43, 4310 (1991).

    Article  ADS  Google Scholar 

  28. B. Valeur, J.-P. Jarry, F. Geny, and L. Monnerie, J. Poly. Sci. 13, 667 (1975);

    Google Scholar 

  29. 8.24a B. Valeur, L. Monnerie, and J.P. Jarry, J. Poly. Sci. 13, 675 (1975).

    Google Scholar 

  30. R.Y. Dong and G.M. Richards, J. Chem. Soc. Faraday Trans. 88, 1885 (1992).

    Article  Google Scholar 

  31. R.Y. Dong and G.M. Richards, Chem. Phys. Lett. 200, 541 (1992).

    Article  ADS  Google Scholar 

  32. J.H. Freed, J. Chem. Phys. 66, 4183 (1977).

    Article  ADS  Google Scholar 

  33. P. Ukleja, J. Pirs, and J.W. Doane, Phys. Rev. A 14, 414 (1976).

    Article  ADS  Google Scholar 

  34. S. Zumer and M. Vilfan, Phys. Rev. A 17, 424 (1978).

    Article  ADS  Google Scholar 

  35. R.Y. Dong and G.M. Richards, J. Chem. Soc. Faraday Trans. 2 84, 1066 (1988).

    Google Scholar 

  36. C.R.J. Counsell, J.W. Emsley, G.R. Luckhurst, D.L. Turner, and J. Charvolin, Mol. Phys. 52, 499 (1984).

    Article  ADS  Google Scholar 

  37. G.M. Richards and R.Y. Dong (to be published).

    Google Scholar 

  38. P.A. Beckmann, J.W. Emsley, G.R. Luckhurst, and D.L. Turner, Mol. Phys. 50, 699 (1983).

    Article  ADS  Google Scholar 

  39. B.R. Ratna and R. Shashidhar, Mol. Cryst. Liq. Cryst. 42, 185 (1977).

    Article  Google Scholar 

  40. R.Y. Dong and G.M. Richards, J. Chem. Phys. 91, 7276 (1989).

    Article  ADS  Google Scholar 

  41. C. Chachaty, G.G. Warr, M. Jansson, and P. Li, J. Phys. Chem. 95, 3830 (1991).

    Article  Google Scholar 

  42. C. Chachaty and T. Bredel, J. Chem. Soc. Faraday Trans. 88, 1893 (1992).

    Article  Google Scholar 

  43. C. Chachaty, Prog. NMR Spectrosc. 19, 183 (1987).

    Article  Google Scholar 

  44. C.J.R. Counsell, J.W. Emsley, H.J. Heaton, and G.R. Luckhurst, Mol. Phys. 54, 857 (1985).

    Article  ADS  Google Scholar 

  45. R.Y. Dong, L. Friesen, and G.M. Richards, Mol. Phys. (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Dong, R.Y. (1994). Internal Dynamics of Flexible Mesogens. In: Nuclear Magnetic Resonance of Liquid Crystals. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0208-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0208-7_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0210-0

  • Online ISBN: 978-1-4684-0208-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics