Skip to main content

Multiple-Quantum and Two-Dimensional NMR

  • Chapter
Nuclear Magnetic Resonance of Liquid Crystals

Part of the book series: Partially Ordered Systems ((PARTIAL.ORDERED))

  • 106 Accesses

Abstract

In this chapter, applications of new NMR techniques to the study of liquid crystals are described in a cursory way. Two-dimensional (2D) 13C NMR of liquid crystals was mentioned at the end of Chapter 3. The carbon-proton dipolar couplings were determined by combining near magic-angle spinning of the sample and the separated local field spectroscopy [9.1]. A 2D 19F spin echo experiment on a sample rotating near the magic-angle has also been reported [9.2]. The sample contains a chiral solute dissolved in a liquid crystal. Deuteron NMR is by far the most extensively used probe of internal motion and molecular ordering in liquid crystals. One common problem encountered in 2H NMR of liquid crystals is the assignment of deuterium resonances. This can be overcome by synthesis of singly labeled compounds, but this is often time-consuming and expensive. The assignment problem is even more difficult when two deuterated chains are present in a mesogen. The deuterium 2D autocorrelation experiment [9.3] can be used to assign the deuteron signals of perdeuterated liquid crystals. Deuteron 2D exchange spectroscopy [9.4, 9.5] has been used to study slow motions in glass-forming discotic liquid crystals [9.6, 9.7] and in liquid-crystalline side group polymers [9.8]. Some of these 2D NMR experiments on liquid crystals will be surveyed in Section 9.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimension (Clarendon Press, Oxford, 1987).

    Google Scholar 

  2. N.T. Lai, J.P. Bayle, J.M. Ouvrard, and J. Courtieu, Liq. Cryst. 3, 745 (1988).

    Article  Google Scholar 

  3. J.W. Emsley and D.L. Turner, Chem. Phys. Lett. 82, 447 (1981).

    Article  ADS  Google Scholar 

  4. J. Jeener, B.H. Meier, P. Bachmann, and R.R. Ernst, J. Chem. Phys. 71, 4546 (1979).

    Article  ADS  Google Scholar 

  5. C. Schmidt, B. Blümich, S. Wefing, and H.W. Spiess, Chem. Phys. Lett. 130, 84 (1986).

    Article  ADS  Google Scholar 

  6. M. Werth, J. Leisen, C. Boeffel, R.Y. Dong, and H.W. Spiess, J. Phys. II France 3, 53 (1993).

    Article  Google Scholar 

  7. J. Leisen, M. Werth, C. Boeffel, and H.W. Spiess, J. Chem. Phys. 97, 3749 (1992).

    Article  ADS  Google Scholar 

  8. J. Leisen, C. Boeffel, R.Y. Dong, and H.W. Spiess, Liq. Cryst. 14, 215 (1993).

    Article  Google Scholar 

  9. G. Bodenhausen, Prog. NMR Spectrosc. 14, 137 (1981).

    Article  Google Scholar 

  10. D.P. Weitekamp, Adv. Magn. Reson. 11, 111 (1983).

    Google Scholar 

  11. G. Drobny, Nuclear Magnetic Resonance of Liquid Crystals, edited by J.W. Emsley (D. Reidel Publishing Co., Dordrecht, 1985), Chap. 12.

    Google Scholar 

  12. K. Hayamizu and O. Yamamoto, J. Magn. Reson. 41, 94 (1980).

    Google Scholar 

  13. J.W. Emsley, Nuclear Magnetic Resonance of Liquid Crystals, edited by J.W. Emsley (D. Reidel Publishing Co., Dordrecht, 1985), Chap. 15.

    Google Scholar 

  14. M. Schwartz, P.E. Fagerness, C.H. Wang, and D.M. Grant, J. Chem. Phys. 60, 5066 (1974).

    Article  ADS  Google Scholar 

  15. A. Pines and J.J. Chang, J. Am. Chem. Soc. 96, 5590 (1974); Phys. Rev. A 10, 946 (1974).

    Google Scholar 

  16. H. Hutton, E. Bock, E. Tomchuk, and R.Y. Dong, J. Chem. Phys. 68, 940 (1978).

    Article  ADS  Google Scholar 

  17. A. Höhener, L. Müller, and R.R. Ernst, Mol. Phys. 38, 909 (1979).

    Article  ADS  Google Scholar 

  18. R.J. Wittebort, R. Subramanian, N.P. Kulshreshtha, and D.B. Dupré, J. Chem. Phys. 83, 2457 (1985).

    Article  ADS  Google Scholar 

  19. B.M. Fung and J.A. Fzal, J. Am. Chem. Soc. 108, 1107 (1986).

    Article  Google Scholar 

  20. C. Schmidt, B. Blümich, and H.W. Spiess, J. Magn. Reson. 79, 269 (1988).

    Google Scholar 

  21. M.L. Williams, R.F. Landel, and J.D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).

    Article  Google Scholar 

  22. P.G. de Gennes, J. Physique Lett. 44, 1–657 (1983).

    Google Scholar 

  23. D. Guillon, A. Skoulios, C. Piechocki, and P. Weber, Mol. Cryst. Liq. Cryst. 100, 275 (1983).

    Article  Google Scholar 

  24. D. Goldfarb, Z. Luz, and H. Zimmermann, J. Physique 43, 421 (1982).

    Article  Google Scholar 

  25. R.Y. Dong, D. Goldfarb, M.E. Moseley, Z. Luz, and H. Zimmermann, J. Phys. Chem. 88, 3148 (1984).

    Article  Google Scholar 

  26. C. Boeffel and H.W. Spiess, Side Chain Liquid Crystal Polymers, edited by C.B. McArdle (Blackie and Son Ltd., Glasgow and London, 1989).

    Google Scholar 

  27. H.W. Spiess Development in Oriented Polymers 1, edited by I.M. Ward (Applied Science, London, 1982).

    Google Scholar 

  28. J. Dolinšek, O. Jarh, M. Vilfan, S. Žumer, R. Blinc, J.W. Doane, and G. Crawford, J. Chem. Phys. 95, 2154 (1991).

    Article  ADS  Google Scholar 

  29. L. Müller and S.I. Chan, J. Chem. Phys. 78, 4341 (1983).

    Article  ADS  Google Scholar 

  30. V.W. Miner, P.M. Tyrell, and J.H. Prestegard, J. Magn. Reson. 55, 438 (1983).

    Google Scholar 

  31. C. Boeffel, Z. Luz, R. Poupko, and A. J. Vega, Isr. J. Chem. 28, 283 (1988).

    Google Scholar 

  32. E.E. Burnell and P. Diehl, Mol. Phys. 24, 489 (1972).

    Article  ADS  Google Scholar 

  33. D.S. Stephenson and G. Binsch, J. Magn. Reson. 37, 395 (1980); Mol. Phys. 43, 697 (1981).

    Google Scholar 

  34. G. Chidichimo, A. Liguori, and M. Longeri, J. Magn. Reson. 51, 438 (1983).

    Google Scholar 

  35. A. Wokaun and R.R. Ernst, Mol. Phys. 36, 317 (1978);

    Article  ADS  Google Scholar 

  36. A. Pines, D. Wemmer, J. Tang, and S. Sinton, Bull. Am. Phys. Soc. 21, 23 (1978).

    Google Scholar 

  37. G. Drobny, A. Pines, S. Sinton, D.P. Weitekamp, and D. Wemmer, Faraday Symp. Chem. Soc. 13, 49 (1979).

    Article  Google Scholar 

  38. S. Sinton and A. Pines, Chem. Phys. Lett. 76, 263 (1980).

    Article  ADS  Google Scholar 

  39. W.S. Warren and A. Pines, J. Am. Chem. Soc. 103, 1613 (1981).

    Article  Google Scholar 

  40. D.P. Weitekamp, J.R. Garbów, and A. Pines, J. Chem. Phys. 77, 2870 (1982).

    Article  ADS  Google Scholar 

  41. S.W. Sinton, D.B. Zax, J.B. Murdoch, and A. Pines, Mol. Phys. 53, 333 (1984).

    Article  ADS  Google Scholar 

  42. G.P. Drobny, Annu. Rev. Phys. Chem. 36, 451 (1985).

    Article  ADS  Google Scholar 

  43. G. Bodenhausen, R.L. Void, and R.R. Void, J. Magn. Reson. 37, 93 (1980).

    Google Scholar 

  44. S. Hsi, H. Zimmermann, and Z. Luz, J. Chem. Phys. 69, 4126 (1978).

    Article  ADS  Google Scholar 

  45. Z. Luz, R.C. Hewitt, and S. Meiboom, J. Chem. Phys. 61, 1758 (1974).

    Article  ADS  Google Scholar 

  46. R.L. Void, R.R. Void, R. Poupko, and G. Bodenhausen, J. Magn. Reson. 38, 141 (1980).

    Google Scholar 

  47. R. Poupko, R.L. Void, and R.R. Void, J. Magn. Reson. 34, 67 (1979).

    Google Scholar 

  48. D. Jaffe, R.R. Void, and R.L. Void, J. Magn. Reson. 46, 475, 496 (1982).

    Google Scholar 

  49. D. Jaffe, R.L. Void, and R.R. Void, J. Chem. Phys. 78, 4852 (1983).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Dong, R.Y. (1994). Multiple-Quantum and Two-Dimensional NMR. In: Nuclear Magnetic Resonance of Liquid Crystals. Partially Ordered Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-0208-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-0208-7_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-0210-0

  • Online ISBN: 978-1-4684-0208-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics