Skip to main content

Comparative Electrobiology of Mammalian Central Neurons

  • Chapter
Brain Slices

Abstract

In assessing the impact of the in vitro analysis of CNS function, especially in mammals, one issue has become clear; mammalian neurons are endowed with a large and intricate set of ionic conductances. The intricacy of these conductances relates not only to their ionic specificity, their voltage dependence, and their modulation by neurotransmitters and neuropeptides, but also to their location on the soma-dendritic regions of the neurons. This realization has forced all of us to reexamine the levels at which the rather involved interactions between neurons actually occur. For many years, most of the complexity demonstrable electrophysiologically in different regions of the nervous system was assumed to be produced by the synaptic interactions, i.e., the neuronal network. However, it is evident, following the development of the in vitro preparations, that much of the electrophysiology encountered in mammalian neurons does not derive necessarily from the attributes of networks but, rather, from the intrinsic electrical properties of the cells themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P. R. and Halliwell, J. V., 1982, A hyperpolarization-induced inward current in hippocampal pyramidal cells, J. Physiol. (London) 324:62–63P.

    Google Scholar 

  • Adams, P. R., Brown, D. A., and Halliwell, J. V., 1981, Cholinergic regulation of M-current in hippocampal pyramidal cells, J. Physiol (London) 317:29–30P.

    Google Scholar 

  • Adams, P. R., Brown, D. A., and Constanti, A., 1982a, M-currents and other potassium currents in bullfrog sympathetic neurones, J. Physiol (London) 330:537–572.

    CAS  Google Scholar 

  • Adams, P. R., Constanti, A., Brown, D. A., and Clark, R. B., 1982b, Intracellular calcium activates a fast voltage-sensitive potassium current in vertebrate sympathetic neurones, Nature (London) 296:746–749.

    Article  CAS  Google Scholar 

  • Adams, P. R., Brown, D. A., and Constanti, A., 1982c, Pharmacological inhibition of the M-current, J. Physiol (London) 332:223–262.

    CAS  Google Scholar 

  • Adrian, R. H., 1969, Rectification in muscle membrane, Prog. Biophys Mol Biol. 19:339–369.

    Article  PubMed  CAS  Google Scholar 

  • Araki, T. and Terzuolo, C. A., 1962, Membrane currents in spinal motoneurons associated with the action potential and synaptic activity, J. Neurophysiol. 25:772–789.

    PubMed  CAS  Google Scholar 

  • Armstrong, C. M. and Binstock, L., 1965, Anomalous rectification in the squid giant axon injected with tetraethylammonium chloride, J. Gen. Physiol 48:859–872.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, E. F., Barrett, J. N., and Crill, W. E., 1980, Voltage-sensitive outward currents in cat motoneurones, J. Physiol. (London) 304:251–276.

    CAS  Google Scholar 

  • Barrett, J. N. and Crill, W. E., 1974, Specific membrane properties of cat motoneurones, J. Physiol. (London) 239:301–324.

    CAS  Google Scholar 

  • Barrett, J. N. and Crill, W. E., 1980, Voltage clamp of motoneuron somata: Properties of the fast inward current, J. Physiol (London) 304:231–249.

    CAS  Google Scholar 

  • Brigant, J. L. and Mallart, A., 1982, Presynaptic currents in mouse motor endings. J. Physiol (London) 333:619–636.

    CAS  Google Scholar 

  • Brown, H. F. and Adams, P. R., 1979, Muscarinic modification of voltage-sensitive currents in sympathetic neurones, Soc. Neurosci. Abstr. 5:585.

    Google Scholar 

  • Brown, H. F. and Adams, P. R., 1980, Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neuron, Nature (London) 283:673–679.

    Article  CAS  Google Scholar 

  • Brown, H. F. and Difrancisco, D., 1980, Voltage-clamp investigations of membrane currents underlying pace-maker activity in rabbit sino-atrial node, J. Physiol. (London) 308:311–351.

    Google Scholar 

  • Cahalan, M., 1978, Local anesthetic block of sodium channels in normal and pronasetreated squid giant axons, Biophys. J. 23:285–311.

    Article  PubMed  CAS  Google Scholar 

  • Cahalan, M., 1980, Molecular properties of sodium channels in excitable membranes, in: The Cell Surface and Neuronal Function (C. W. Cotman, G. Poste, and G. L. Nicolson, eds.), Elsevier North-Holland, Amsterdam, pp. 1–47.

    Google Scholar 

  • Chiu, S. Y., Ritchie, J. M., Rogart, R. B., and Stagg, D., 1979, A quantitative description of membrane currents in rabbit myelinated nerve, J. Physiol. (London) 292:149–166.

    CAS  Google Scholar 

  • Connor, J. A. and Stevens, C. F., 1971, Inward and delayed outward membrane currents in isolated neural somata under voltage clamp, J. Physiol. (London) 213:1–20.

    CAS  Google Scholar 

  • Constanti, A. and Brown, D. A., 1981, M-currents in voltage-clamped mammalian sym pathetic neurones, Neurosci. Lett. 24:289–294.

    Article  PubMed  CAS  Google Scholar 

  • Constanti, A. and Galvan, M., 1983, Fast inward-rectifying current accounts for anomalous rectification in olfactory cortex neurones, J. Physiol. (London) 385:153–178.

    Google Scholar 

  • Czeh, G., 1972, The role of dendritic events in the initiation of monosynaptic spikes in frog motoneurons, Brain Res. 39:505–509.

    Article  PubMed  CAS  Google Scholar 

  • Eccles, J. C., Libet, B., and Young, R. R., 1958, The behavior of chromatolysed motoneurons studied by intracellular recording, J. Physiol. (London) 143:11–40.

    CAS  Google Scholar 

  • Fedulova, S. A., Kostyuk, P. G., and Veselovsky, N. S., 1981, Calcium channels in the somatic membrane of the rat dorsal ganglion, effects of cAMP, Brain Res. 214:210–214.

    Article  PubMed  CAS  Google Scholar 

  • Fukuda, J. and Kameyama, M., 1980, Tetrodotoxin-sensitive and tetrodotoxinresistant sodium channels in tissue-cultured spinal ganglion neurons from adult mammals, Brain Res. 182:191–197.

    Article  PubMed  CAS  Google Scholar 

  • Fukushima, Y., 1982, Blocking kinetics of the anomalous potassium rectifier of tunicate egg studied by single channel recording, J. Physiol. (London) 331:311–331.

    CAS  Google Scholar 

  • Fulton, B. and Walton, K., 1981, Calcium-dependent spikes in neonatal rat spinal cord in vitro, J. Physiol. (London) 317:25–26P.

    Google Scholar 

  • Gustafsson, B., Galvan, M., Grafe, P., and Wigstrom, H., 1982, A transient outward current in a mammalian central neurone blocked by 4-amino-pyridine, Nature (London) 299:252–254.

    Article  CAS  Google Scholar 

  • Hagiwara, S., Miyazaki, S., and Rosenthal, N. P., 1976, Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish, J. Gen. Physiol 67:621–628.

    Article  PubMed  CAS  Google Scholar 

  • Halliwell, J. V. and Adams, P. R., 1982, Voltage clamp analysis of muscarinic excitation in hippocampal neurons, Brain Res. 250:71–92.

    Article  PubMed  CAS  Google Scholar 

  • Harada, V. and Takahashi, T., 1983, The calcium component of the action potential in spinal motoneuron of the rat, J. Physiol. (London) 335:89–100.

    CAS  Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F., 1952a, The dual effect of membrane potential on sodium conductance in the giant axon of Loligo, J. Physiol. (London) 116:497–506.

    CAS  Google Scholar 

  • Hodgkin, A. L. and Huxley, A. F., 1952b, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London) 117:500–544.

    CAS  Google Scholar 

  • Horn, R., 1977, Tetrodotoxin-resistant divalent action potentials in an axon of Aplysia, Brain Res. 133:177–182.

    Article  CAS  Google Scholar 

  • Hotson, J. R. and Prince, D. A., 1980, A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons, J. Neurophysiol. 43:409–419.

    PubMed  CAS  Google Scholar 

  • Hotson, J. R., Prince, D. A., and Schwartzkroin, P. A., 1979, Anomalous inward rectification in hippocampal neurons, J. Neurophysiol. 42:889–895.

    PubMed  CAS  Google Scholar 

  • Jahnsen, J. and LlinĂ¡s, R., Electrophysiological properties of mammalian thalamic neurones: An in vitro study, J. Physiol., in press.

    Google Scholar 

  • Jahnsen, J. and LlinĂ¡s, R., Ionic basis for the electrical activation and the oscillatory properties of thalamic neurons in vitro, J. Physiol, in press.

    Google Scholar 

  • Kandel, E. R. and Tauc, L., 1966, Anomalous rectification in the metacerebral giant cells and its consequence for synaptic transmission, J. Physiol. (London) 183:287–304.

    CAS  Google Scholar 

  • Katz, B., 1949, Les constantes Ă©lĂ©ctriques de la membrane du muscle, Arch. Sci. Physiol. 3:285–299.

    CAS  Google Scholar 

  • Kobayashi, H., Hashiguchi, T., Tosaka, T., and Mochida, S., 1981, Muscarinic antagonism of a persistent outward current in sympathetic neurons of rabbits and its partial contribution to the generation of the slow EPSP, Neurosci. Lett. 6(suppl.):S64.

    Google Scholar 

  • Krnjevic, K. and Lisiewicz, A., 1972, Injections of calcium ions into spinal motoneurones, J. Physiol. (London) 225:363–390.

    CAS  Google Scholar 

  • Kuno, M. and LlinĂ¡s, R., 1970, Enhancement of synaptic transmission by dendritic potentials in chromatolysed motoneurones of the cat, J. Physiol. (London) 210:807–821.

    CAS  Google Scholar 

  • LlinĂ¢s, R., 1979, The role of calcium in neuronal function, in: The Neurosciences: Fourth Study Program (F. O. Schmitt and F. G. Worden, eds.), M.I.T. Press, Cambridge, Mass. pp. 555–571.

    Google Scholar 

  • LlinĂ¡s, R., Rebound excitation as the physiological basis for tremor: A biophysical study of the oscillatory properties of mammalian central neurons in vitro, in: International Neurological Symposia: Tremor (R. Capildeo and L. J. Findley, eds.), Macmillan, London, in press.

    Google Scholar 

  • LlinĂ¡s, R. and Hess, R., 1976, Tetrodotoxin-resistant dendritic spikes in avian Purkinje cell, Proc. Nat. Acad. Sci. USA 73:2520–2523.

    Article  PubMed  Google Scholar 

  • LlinĂ¡s, R. and Jahnsen, H., 1982, Electrophysiology of mammalian thalamic neurones in vitro, Nature (London) 297:406–408.

    Article  Google Scholar 

  • LlinĂ¡s, R. and Nicholson, C., 1971, Electrophysiological properties of dendrites and somata in alligator Purkinje cells, J. Neurophysiol. 34:534–551.

    Google Scholar 

  • LlinĂ¡s, R. and Sugimori, M., 1978, Dendritic calcium spiking in mammalian Purkinje cells: In vitro study of its function and development, Soc. Neurosci. Abstr. 4:66.

    Google Scholar 

  • LlinĂ¡s, R. and Sugimori, M., 1980a, Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices, J. Physiol. (London) 305:171–195.

    Google Scholar 

  • LlinĂ¡s, R. and Sugimori, M., 1980b, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices, J. Physiol. (London) 305:197–213.

    Google Scholar 

  • LlinĂ¡s, R. and Yarom, Y., 1980, Electrophysiological properties of mammalian inferior olivary cells in vitro, in: The Inferior Olivary Nucleus: Anatomy and Physiology (J. Courville, C. de Montigny, and Y. Lamarre, eds.), Raven Press, New York, pp. 379–388.

    Google Scholar 

  • LlinĂ¡s, R. and Yarom, Y., 1981a, Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro, J. Physiol (London) 315:569–584.

    Google Scholar 

  • LlinĂ¡s, R. and Yarom, Y., 1981b, Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances, J. Physiol. (London) 315:549–567.

    Google Scholar 

  • LlinĂ¡s, R., Sugimori, M., and Walton, K., 1977, Calcium dendritic spikes in the mammalian Purkinje cells, Soc. Neurosci. Abstr. 3:58.

    Google Scholar 

  • Lorente de NĂ³, R. and Condouris, G. A., 1959, Decrementai conduction in peripheral nerve. Integration of stimuli in the neuron, Proc. Natl. Acad. Sci. USA 45:592–617.

    Article  Google Scholar 

  • Lux, H. D. and Winter, P., 1968, Studies on EPSPs in normal and retrograde recting facial motoneurones, Proc. Int. Union Physiol. Sci. 7:818.

    Google Scholar 

  • MacDermott, A. B. and Weight, F. F., 1980, The pharmacological blockade of potassium conductance in voltage-clamped bullfrog sympathetic neurons, Fed. Proc. 39:2074.

    Google Scholar 

  • MacDermott, A. B. and Weight, F. F., 1982, Action potential repolarization may involve a transient, Ca2+-sensitive outward current in a vertebrate neurone, Nature (London) 300:185–188.

    Article  CAS  Google Scholar 

  • Matsuda, Y., Yoshida, S., and Yonezawa, T., 1977, Tetrodotoxin sensitivity and Ca component of action potentials of mouse dorsal root ganglion cells cultures in vitro, Brain Res. 154:69–82.

    Article  Google Scholar 

  • Matteson, D. R. and Armstrong, C. M., 1982, Evidence for a population of sleepy sodium channels in squid axon at low temperature, J. Gen. Physiol. 79:739–758.

    Article  PubMed  CAS  Google Scholar 

  • McAfee, D. A. and Yarowsky, P. J., 1979, Calcium-dependent potentials in the mammalian sympathetic neurone, J. Physiol. (London) 290:507–523.

    CAS  Google Scholar 

  • Meech, R. W., 1972, Intracellular calcium injection causes increased potassium conductance in aplysia nerve cells, Comp. Biochem. Physiol. 42A:493.

    Article  Google Scholar 

  • Meech, R. W., 1978, Calcium-dependent potassium activation in nervous tissues, Am. Rev. Biophys. Bioeng. 7:1–18.

    Article  CAS  Google Scholar 

  • Murase, K. and Randic, M., 1983, Electrophysiological properties of rat spinal dorsal horn neurones in vitro: Calcium-dependent action potentials, J. Physiol. (London) 334:141–153.

    CAS  Google Scholar 

  • Nelson, P. G. and Frank, K., 1967, Anomalous rectification in cat spinal motoneurons and effects of polarizing currents on excitatory postsynaptic potentials, J. Neurophysiol. 30:1097–1113.

    PubMed  CAS  Google Scholar 

  • Noma, A. and Irisawa, H., 1976, Membrane currents in the rabbit sino atrial node cell as studied by double microelectrode method, PflĂ¼gers Arch. 364:45–52.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, L. M. and Macdonald, R. L., 1981, DL-muscarine decreases a potassium con ductance to depolarize mammalian spinal cord neurons in cell culture, Neurosci. Abstr. 7:725.

    Google Scholar 

  • Ohmori, H., 1978, Inactivation kinetics and steady-state noise in the anomalous rectifier of tunicate cell membranes, J. Physiol. (London) 281:77–99.

    CAS  Google Scholar 

  • Purpura, D. P., Prevelic, N., and Santini, M., 1968, Hyperpolarizing increase in membrane conductance in hippocampal neurons, Brain Res. 7:310–312.

    Article  PubMed  CAS  Google Scholar 

  • Scholfield, C. N., 1978, Electrical properties of neurones in the olfactory cortex slice in vitro, J. Physiol. (London) 275:547–557.

    CAS  Google Scholar 

  • Schwartzkroin, P. A., 1975, Characteristics of CA1 neurons recorded intracellularly in the hippocampal slice, Brain Res. 85:423–435.

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P. A. and Slawsky, M., 1977, Probable calcium spikes in hippocampal neurons, Brain Res. 135:157–161.

    Article  PubMed  CAS  Google Scholar 

  • Schwindt, P. C. and Crill, W. E., 1980, Properties of a persistent inward current in normal and TEA-injected motoneurons, J. Neurophysiol. 43:1700–1724.

    PubMed  CAS  Google Scholar 

  • Shapovalov, A. I. and Grantyn, A. A., 1968, A suprasegmental synaptic influence on chromatolysed motor neurones, Biofizika 3:260–269.

    Google Scholar 

  • Sigworth, F. J. and Neher, E., 1980, Single Na channel currents observed in cultured rat muscle cells, Nature (London) 287:447–449.

    Article  CAS  Google Scholar 

  • Spencer, W. A. and Kandel, E. R., 1961, Electrophysiology of hippocampal neurons. IV. Fast preprotentials, J. Neurophysiol. 24:272–285.

    Google Scholar 

  • Stafstrom, C. E., Schwindt, P. C., and Crill, W. E., 1982, Negative slope conductance due to a persistent subthreshold sodium current in cat neocortical neurons in vitro, Brain Res. 236:221–226.

    Article  PubMed  CAS  Google Scholar 

  • Sugimori, M. and LlinĂ¡s, R., 1980, Lidocaine differentially blocks fast and slowly inacti vating sodium conductance in Purkinje cells: An in vitro study in guinea pig cerebellum using iontophoretic glutamic acid, Soc. Neurosci. Abstr. 6:468.

    Google Scholar 

  • Sugimori, M. and LlinĂ¡s, R., 1982, Role of dendritic electroresponsiveness in neuronal integration: In vitro study of mammalian Purkinje cells, Soc. Neurosci. Abstr. 8:446.

    Google Scholar 

  • Takahashi, K., Kubota, K., and Masatake, U., 1967, Recurrent facilitation in cat pyramidal tract cells, J. Neurophysiol. 30:22–34.

    Google Scholar 

  • Terzuolo, C. A. and Araki, T., 1961, An analysis of intra- versus extracellular potential changes associated with activity of single spinal motoneurons, Ann. N. Y. Acad. Sci. 94:547–558.

    Article  PubMed  CAS  Google Scholar 

  • Walton, K. and Fulton, B., 1981, Role of calcium conductance in neonatal motoneurons of isolated rat spinal cord, Soc. Neurosci. Abstr. 7:246.

    Google Scholar 

  • Wilson, W. A. and Goldner, M. M., 1975, Voltage clamping with a single microelectrode, J. Neurobiol. 6:411–422.

    Article  PubMed  CAS  Google Scholar 

  • Wong, R. K. S. and Prince, D. A., 1978, Participation of calcium spikes during intrinsic burst firing in hippocampal neurons, Brain Res. 159:385–390.

    Article  PubMed  CAS  Google Scholar 

  • Wong, R. K. S., Prince, D. A., and Basbaum, A. I., 1979, Intradendritic recordings from hippocampal neurons, Proc. Natl. Acad. Sci. USA 76:986–990.

    Article  PubMed  CAS  Google Scholar 

  • Yanagihara, K. and Irisawa, H., 1980, Inward current activated during hyperpolarization in the rabbit sino atrial node, PflĂ¼gers Arch. 385:11–19.

    Article  PubMed  CAS  Google Scholar 

  • Yarom, Y. and LlinĂ¡s, R., 1979, Electrophysiological properties of mammalian inferior olive neuron in in vitro brain stem slices and in vitro whole brain stem, Soc. Neurosci. Abstr. 5:109.

    Google Scholar 

  • Yarom, Y., Sugimori, M., and LlinĂ¡s, R., 1980, Inactivating fast potassium conductance in vagal motoneurons in guinea pigs: An in vitro study, Soc. Neurosci. Abstr. 6:198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

LlinĂ¡s, R.R. (1984). Comparative Electrobiology of Mammalian Central Neurons. In: Dingledine, R. (eds) Brain Slices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4583-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4583-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4585-5

  • Online ISBN: 978-1-4684-4583-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics