Skip to main content

Correlated Electrophysiological and Biochemical Studies of Hippocampal Slices

  • Chapter
Brain Slices

Abstract

The nervous system operates with impulses and transmissions that have time scales in the millisecond range, and yet is called upon to store information for periods of years. Evidently, the patterns of electrical activity that speed through brain circuitries, on some occasions, must modify the properties of the elements that transmit them. Understanding the nature of these modifications, the physiological forms they take, and the cellular chemistries that bring them into existence constitutes one of the major problems of neurobiology. Studies of the relatively simple nervous systems of invertebrates by Kandel and others have located synapses that are modified by experience (see Kandel, 1981, for a review). Comparable efforts on mammalian central nervous system (CNS), hampered as they are by the extraordinary complexity of the brain, are still at the stage of conclusively pinning down sites that show lasting traces of experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alger, B. E. and Teyler, T. J., 1976, Long-term and short-term plasticity in CA3 and dentate regions of the rat hippocampal slice, Brain Res. 110:463–480.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, P., Sundberg, S. H., Sveen, O., and Wigstrom, H., 1977, Specific long-lasting potentiation of synaptic transmission in hippocampal slices, Nature (London) 266:736–737.

    Article  Google Scholar 

  • Barnes, C. A., 1979, Memory deficits associated with senescence: A neurophysiological and behavioral study in the rat, J. Comp. Phys. Psychol. 93:74–104.

    Article  CAS  Google Scholar 

  • Baudry, M. and Lynch, G., 1979a, Two glutamate binding sites in rat hippocampal membranes, Eur. J. Pharmacol. 58:519–521.

    Article  PubMed  CAS  Google Scholar 

  • Baudry, M. and Lynch, G., 1979b, Regulation of glutamate receptors by cations, Nature (London) 282:748–750.

    Article  CAS  Google Scholar 

  • Baudry, M. and Lynch, G., 1980, Regulation of hippocampal glutamate receptors: Evidence for the involvement of a calcium-activated protease, Proc. Natl. Acad. Sci. USA 77:2298–2302.

    Article  PubMed  CAS  Google Scholar 

  • Baudry, M. and Lynch, G., 1981a, Hippocampal glutamate receptors, Mol. Cell. Biochem. 38:5–18.

    Article  PubMed  CAS  Google Scholar 

  • Baudry, M. and Lynch, G., 1981b, Characterization of two 3H-glutamate binding sites in rat hippocampal membranes, J. Neurochem. 36(3):811–820.

    Article  PubMed  CAS  Google Scholar 

  • Baudry, M., Oliver, M., Creager, R., Wieraszko, A., and Lynch, G., 1980, Increase in glutamate receptors following repetitive electrical stimulation in hippocampal slices, Life Sci. 27:325–330.

    Article  PubMed  CAS  Google Scholar 

  • Baudry, M., Arst, D., Oliver, M., and Lynch, G., 1981a, Development of glutamate binding sites and their regulation by calcium in rat hippocampus, Dev. Brain Res. 1:37–48.

    Article  CAS  Google Scholar 

  • Baudry, M., Smith, E., and Lynch, G., 1981b, Influences of temperature, detergents, and enzymes on glutamate receptor binding and its regulation by calcium in rat hippocampal membranes, Mol. Pharmacol. 20:280–286.

    PubMed  CAS  Google Scholar 

  • Baudry, M., Bundman, M., Smith, E., and Lynch, G., 1981c, Micromolar levels of calcium stimulate proteolytic activity and glutamate receptor binding in rat brain synaptic membranes, Science 212:937–938.

    Article  PubMed  CAS  Google Scholar 

  • Baudry, M., Fuchs, J., Kessler, M., Arst, D., and Lynch, G., 1982a, Entorhinal cortex lesions induced a decreased calcium transport in hippocampal mitochondria, Science 216:411–413.

    Article  PubMed  CAS  Google Scholar 

  • Baudry, M., Kessler, M., Smith, E. K., and Lynch, G., 1982b, The regulation of pyruvate dehydrogenase activity in rat hippocampal slices: Effect of dichloroacetate, Neurosci. Lett. 31:41–46.

    Article  PubMed  CAS  Google Scholar 

  • Baudry, M., Gall, C., Kessler, M., Alapour, H., and Lynch, G., 1983, Denervation-induced decrease in mitochondrial calcium transport in rat hippocampus, J. Neurosci. 3:252–259.

    PubMed  CAS  Google Scholar 

  • Bliss, T. V. P. and Gardner-Medwin, A. T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path, J. Physiol. (London) 232:357–374.

    CAS  Google Scholar 

  • Bliss, T. V. P. and Lomo, T., 1973, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J. Physiol. (London) 232:331–356.

    CAS  Google Scholar 

  • Browning, M., Dunwiddie, T., Bennett, W., Gispen, W., and Lynch, G., 1979, Synaptic phosphoproteins: Specific changes after repetitive stimulation of the hippocampal slice, Science 903:60–62.

    Article  Google Scholar 

  • Browning, M., Baudry, M., Bennett, W., and Lynch, G., 1981a, Phosphorylation-mediated changes in pyruvate dehydrogenase activity influence pyruvate-supported calcium accumulation by brain mitochondria, J. Neurochem. 36:1932–1940.

    Article  PubMed  CAS  Google Scholar 

  • Browning, M., Bennett, W., Kelly, P., and Lynch, G., 1981b, The 40,000 Mr brain phosphoprotein influenced by high frequency synaptic stimulation is the alpha subunit of pyruvate dehydrogenase, Brain Res. 218:255–266.

    Article  PubMed  CAS  Google Scholar 

  • De Barry, J., Vincendon, G., and Gombos, G., 1980, High affinity glutamate binding during postnatal development of rat cerebellum, FEBS Lett. 109:175–179.

    Article  PubMed  Google Scholar 

  • Dolphin, A. C., Errington, M. L., and Bliss, T. V. P., 1982, Long-term potentiation of the perforant path in vivo is associated with increased glutamate release, Nature (London) 297:496–498.

    Article  CAS  Google Scholar 

  • Douglas, R. M. and Goddard, G. V., 1975, Long-term potentiation of the perforant path — granule cell synapses in the rat hippocampus, Brain Res. 86:205–215.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V. and Lynch, G. S., 1978, Long-term potentiation and depression of synaptic responses in the rat hippocampus: Localization and frequency dependency, J. Physiol. (London) 276:353–367.

    CAS  Google Scholar 

  • Dunwiddie, T. V. and Lynch, G., 1979, The relationship between extracellular calcium concentration and the induction of hippocampal long-term potentiation, Brain Res. 169:103–110.

    Article  PubMed  CAS  Google Scholar 

  • Dunwiddie, T. V., Madison, D., and Lynch, G. S., 1978, Synaptic transmission is required for initiation of long-term potentiation, Brain Res. 150:413–417.

    Article  PubMed  CAS  Google Scholar 

  • Fagni, L., Baudry, M. and Lynch, G., 1983a, Desensitization to glutamate does not affect synaptic transmission in rat hippocampal slices, Brain Res. 261:167–171.

    Article  PubMed  CAS  Google Scholar 

  • Fagni, L., Baudry, M. and Lynch, G., 1983b, Classification and properties of acidic amino acid receptors in hippocampus. I. Electrophysiological studies of an apparent desensitization and interactions with drugs which block transmission, J. Neuroscience, 3:1538–1546.

    CAS  Google Scholar 

  • Foster, A. C. and Roberts, P. J., 1978, High-affinity L-3H-glutamate binding to postsynaptic receptor sites on rat cerebellar membranes, J. Neurochem. 31:1467–1477.

    Article  PubMed  CAS  Google Scholar 

  • Foster, A. C., Mena, E. E., Fagg, G. E., and Cotman, C. W., 1981, Glutamate and aspartate binding sites are enriched in synaptic junctions isolated from rat brain, J. Neurosci. 1:620–626.

    PubMed  CAS  Google Scholar 

  • Greengard, P., 1978, Phosphorylated proteins as physiological effectors, Science 199:146–152.

    Article  PubMed  CAS  Google Scholar 

  • Kandel, E., 1981, Neuronal plasticity and the modification of behavior, in: Handbook of Physiology, Section I: The Nervous System (J. M. Brookhart, V. B. Mountcastle, E. R. Kandel, and S. R. Geiger, eds.), American Physiological Society, Baltimore, pp. 1137–1182.

    Google Scholar 

  • Kishimoto, A., Kajikawa, N., Tabuchi, H., Shiota, M., and Nishizuka, Y., 1981, Calcium-dependent neutral proteases, widespread occurrence of a species of protease active at lower concentrations of calcium, J. Biochem. 90:889–892.

    PubMed  CAS  Google Scholar 

  • Lee, K., Schottler, F., Oliver, M., and Lynch, G., 1980, Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus, J. Neurophy-siol. 44:247–258.

    CAS  Google Scholar 

  • Lee, K., Oliver, M., Schottler, F., and Lynch, G., 1981, Electron microscopic studies of brain slices: The effects of high frequency stimulation on dendritic ultrastructure, in: Electrical Activity in Isolated Mammalian CNS Preparations (G. Kerkut, ed.), Academic Press, New York, pp. 189–212.

    Google Scholar 

  • Leiter, A. B., Weinberg, M., Isohashi, F., Utter, M. F., and Linn, T., 1978, Relationship between phosphorylation and activity of pyruvate dehydrogenase in rat liver mitochondria and the absence of such a relationship for pyruvate carboxylase, J. Biol. Chem. 253:2716–2723.

    PubMed  CAS  Google Scholar 

  • Levine, J. and Willard, M., 1981, Fodrin: Axonally transported polypeptides associated with the internal periphery of many cells, J. Cell. Biol. 90:631–643.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, G. and Baudry, M., Origins and Manifestations of Neuronal Plasticity in the hippocampus, in: Clinical Neurosciences (W. Willis, ed.), Churchill-Livingstone Publishers, New York, in press.

    Google Scholar 

  • Lynch, G., Halpain, S., and Baudry, M., 1982, Effects of high-frequency synaptic stimulation in glutamate receptor binding studied with a modified in vitro hippocampal slice preparation, Brain Res. 244:101–111.

    Article  PubMed  CAS  Google Scholar 

  • Magilen, G., Gordon, A., Au, A., and Diamond, I., 1981, Identification of a mitochondrial phosphoprotein in brain synaptic membrane preparations, J. Neurochem. 36:1861–1864.

    Article  PubMed  CAS  Google Scholar 

  • Michaelis, E. U., Michaelis, M. L., and Boyarsky, L. L., 1974, High-affinity glutamic acid binding to brain synaptic membranes, Biochem. Biophys. Acta 367:338–348.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, D. G. and Routtenberg, A., 1980, Evidence that a 41,000 dalton brain phosphoprotein is pyruvate dehydrogenase, Biochem. Biophys. Res. Comm. 95:569–576.

    Article  PubMed  CAS  Google Scholar 

  • Murachi, T., Hatanaka, M., Yasumoto, Y., Hakayata, N., and Tanaka, K., 1981a, A quantitative distribution study on calpain and calpastatin in rat tissues and cells, Biochem. Int. 2:651–656.

    CAS  Google Scholar 

  • Murachi, T., Tanaka, K., Hatanaka, M., and Murakami, T., 1981b, Intracellular Ca2+-dependent protease (calpain) and its high-molecular weight endogenous inhibitor (calpastatin), Adv. Enzyme Regul. 19:407–424.

    Article  CAS  Google Scholar 

  • Roberts, P. J., 1974, Glutamate receptors in rat central nervous system, Nature (London) 252:399–401.

    Article  CAS  Google Scholar 

  • Siman, R., Baudry, M. and Lynch, G., Purification from synaptosomal plasma membranes of calpain I, a thiol-protease activated by micromolar calcium concentrations, J. Neurochem., in press.

    Google Scholar 

  • Snyder, S. H. and Bennett, J. P., 1976, Neurotransmitter receptors in the brain: Biochemical identification, Annu. Rev. Physiol. 38:153–175.

    Article  PubMed  CAS  Google Scholar 

  • Storm-Mathisen, J., 1977, Localization of transmitter candidates in the brain: The hippocampal formation as a model, Prog. Neurobiol. 8:119–181.

    Article  PubMed  CAS  Google Scholar 

  • Toyooka, T., Shimizu, T., and Masaki, T., 1978, Inhibition of proteolytic activity of calcium-activated neutral protease by leupeptin and antipain, Biochem. Biophys. Res. Comm. 82:484–491.

    Article  CAS  Google Scholar 

  • van Harreveld, A. and Fifkova, E., 1975, Swelling of dendritic spines in the fascia dentata after stimulation of the perforant path fibers as a mechanism of post-tetanic potentiation, Exp. Neurol. 49:736–749.

    Article  PubMed  Google Scholar 

  • Vargas, F., Greenbaum, L., and Costa, E., 1980, Participation of cysteine proteinase in the high-affinity Ca++ -dependent binding of glutamate to hippocampal synaptic membranes, Neuropharmacology 19:791–794.

    Article  PubMed  CAS  Google Scholar 

  • Wieraszko, A. and Lynch, G., 1979, Stimulation-dependent release of possible transmitter substances from hippocampal slices studied with localized perfusion, Brain Res. 160:372–376.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, C. and Chujo, T., 1978, Long-term potentiation in thin hippocampal sections studied by intracellular and extracellular recordings, Exp. Neurol. 58:242–250.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Lynch, G., Kessler, M., Baudry, M. (1984). Correlated Electrophysiological and Biochemical Studies of Hippocampal Slices. In: Dingledine, R. (eds) Brain Slices. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4583-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4583-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4585-5

  • Online ISBN: 978-1-4684-4583-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics