Skip to main content

Inelastic Scattering of Fast Particles by Plasmons

  • Chapter
Collective Excitations in Solids

Part of the book series: NATO Advanced Science Institute Series ((NSSB,volume 88))

Abstract

This article is divided into two main parts. In the first part the basic classical concepts of bulk and surface plasmons are reviewed for different surface geometries and model hamil-tonians are constructed for the description of the approximate independent boson behaviour of these collective electronic degrees of freedom and for their interaction with charged particle probes. In the second part, a number of applications in various plasmon spectroscopies will be studied. Only cases where the semi-classical, high-energy approximation holds will be examined.

Energy loss spectra of fast charged probes will be explained for both bulk transmission and for surface reflection geometries in terms of coherent excitation of plasmons. A recent method in which the particle probe is internally excited by scattering off plasmons will also be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alternative derivations in textbooks often use special geometries such as the planar, cylindrical or spherical capacitor configurations for the fluctuation. We leave it to the student to try their elementary electrostatics on such situations as an exercice. See e.g. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1971).

    Google Scholar 

  2. S. Raimes, The Wave Mechanics of Electrons in Metals (North-Holland, Amsterdam 1967).

    Google Scholar 

  3. A number of physical systems in which spherical surface plas-mons play a role have been studied recently in: A.A. Lucas, A. Ronveaux, M. Schmeits and F. Delanaye, Phys. Rev. B12, 5372 (1975);

    ADS  Google Scholar 

  4. A number of physical systems in which spherical surface plas-mons play a role have been studied recently in: K. Ohtaka and A.A. Lucas, Phys. Rev. B18, 4643 (1978);

    ADS  Google Scholar 

  5. K. Ohtaka, H. Miyazaki and A.A. Lucas, Phys. Rev. B21, 467 (1980);

    ADS  Google Scholar 

  6. J.C. Rife, S.E. Donnelly, A.A. Lucas, J.M. Gilles and J.J. Ritsko, to be published.

    Google Scholar 

  7. M. Schmeits and A.A. Lucas, Surface Sci. 64, 176 (1977);

    Article  ADS  Google Scholar 

  8. M. Schmeits and A.A. Lucas, Surface Sci. 74, 524 (1978).

    Article  ADS  Google Scholar 

  9. D. Pines, Elementary Excitations in Solids, W.A. Benjamin, N.Y. (1964).

    MATH  Google Scholar 

  10. A.W. Overhauser, Phys. Rev. B3, 1888 (1971).

    ADS  Google Scholar 

  11. A.G. Eguiluz, Phys. Rev. B, to be published.

    Google Scholar 

  12. J. Rogan, J.E. Inglesfield and T.B. Grimley, J. Phys. C., to be published.

    Google Scholar 

  13. A.A. Lucas, E. Kartheuser and R.G. Badro, Phys. Rev. B2, 2488 (1970).

    ADS  Google Scholar 

  14. G.D. Mahan, in Elementary Excitations in Solids, Molecules and Atoms, ed. by J.T. Devreese, A.B. Kunz and T.C. Collins (Plenum, London, 1974).

    Google Scholar 

  15. M. Sunjic and A.A. Lucas, Phys. Rev. B3, 719 (1971);

    ADS  Google Scholar 

  16. M. Sunjic and A.A. Lucas, Phys. Rev. Letters 26, 229 (1971).

    Article  ADS  Google Scholar 

  17. A.A. Lucas, Phys. Rev. Letters 26, 813 (197l);

    Article  Google Scholar 

  18. A.A. Lucas, Phys. Rev. B4, 2939 (1971).

    ADS  Google Scholar 

  19. E.N. Economou and K.L. Ngai, Adv. Chem. Phys. XXVII, 265 (1974).

    Article  Google Scholar 

  20. A.A. Lucas and M. Sunjic, J. Vac. Science and Technology, 9, 725 (1971).

    Article  ADS  Google Scholar 

  21. R. Gomer and L.W. Swanson, J. Chem. Phys. 38, 1613 (1963).

    Article  ADS  Google Scholar 

  22. D. Newns, J. Chem. Phys. 50, 4572 (1969).

    Article  ADS  Google Scholar 

  23. J. Heinrichs, Phys. Rev. B8, 1346 (1973).

    ADS  Google Scholar 

  24. A.A. Lucas, in “Elementary Excitations in Solids, Molecules and Atoms”, ed. by J.T. Devreese, A.B. Kunz and T.C. Collins, NATO ASI Series B, Plenum (1974) Part A, p. 65.

    Google Scholar 

  25. H. Raether, Springer Tracts in Modern Physics, Vol. 88, Springer-Verlag, Berlin (1980).

    Google Scholar 

  26. J.O.H. Spence and A.E.C. Spargo, Phys. Rev. Letters 26, 895 (1971).

    Article  ADS  Google Scholar 

  27. A.A. Lucas and M. Sunjic, Progress in Surface Sci., 2, 75 (1972), ed. by S.G. Davison, Pergamon Press.

    Article  ADS  Google Scholar 

  28. Cases of Bragg reflections, charge exchange scattering and curved trajectories have been considered in A.A. Lucas and

    Google Scholar 

  29. M. Sunjic, Surface Sci. 32, 439 (1972);

    Article  Google Scholar 

  30. A.A. Lucas, Phys. Rev. B20, 4990 (1979).

    ADS  Google Scholar 

  31. Handbook of Mathematical Functions, ed. by M. Abramowitz and I.A. Stegun, NBS Applied Math. Series 55 (G.P.O. Wash. D.C., 1964).

    MATH  Google Scholar 

  32. C.J. Powell, Phys. Rev. 175, 972 (1968).

    Article  ADS  Google Scholar 

  33. J. Schilling, Z. Phys. B25, 61 (1976).

    ADS  Google Scholar 

  34. Classical particles such as heavy ions have been observed to exhibit Poisson-like energy distributions after interaction with a metal surface. See ref. 10.

    Google Scholar 

  35. A.A. Lucas, Phys. Rev. Letters 43, 1350 (1979);

    Article  ADS  Google Scholar 

  36. A.A. Lucas, Phys. Rev. B20, 4990 (1979).

    ADS  Google Scholar 

  37. H.J. Andra, R. Fröhling, H.J. Plöhn and J.D. Silver, Phys. Rev. Lett. 37, 1212 (1976).

    Article  ADS  Google Scholar 

  38. H. Morawitz and M.R. Philpott, Phys. Rev. 10, 4863 (1974).

    Article  ADS  Google Scholar 

  39. K. Ohtaka and A.A. Lucas, Phys. Rev. B18, 4643 (1978).

    ADS  Google Scholar 

  40. A. Messiah, Quantum Mechanics (North Holland, Amsterdam, 1963) Vol. II.

    Google Scholar 

  41. N.H. Tolk, J.C. Tully, J.S. Kraus, W. Heiland and S.H. Neff, Phys. Rev. Lett. 42, 1475 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Lucas, A.A. (1983). Inelastic Scattering of Fast Particles by Plasmons. In: Di Bartolo, B. (eds) Collective Excitations in Solids. NATO Advanced Science Institute Series, vol 88. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8878-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8878-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8880-7

  • Online ISBN: 978-1-4684-8878-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics