Skip to main content

Hemolymph Proteins Involved in Insect Subzero-Temperature Tolerance: Ice Nucleators and Antifreeze Proteins

  • Chapter
Insects at Low Temperature

Abstract

Prior to 1976, the majority of published studies dealing with the mechanisms of adaptation to subzero temperatures in cold-tolerant insects were concerned with the roles of low-molecular-weight solutes, mainly polyols and sugars. Since that time numerous examples of the importance of hemolymph proteins in insect cold adaptation have been determined. In this chapter, we discuss two types of hemolymph proteins with functionally opposite effects on the physical state of water at subzero temperatures. These are antifreeze proteins, which inhibit freezing, and ice nucleating proteins, which inhibit supercooling and induce ice formation at subzero temperatures above those at which freezing would normally take place in their absence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakken, H. 1985. Cold hardiness in the alpine beetles Patrobus septentrionis and Calathus melanocephalus. J. Insect Physiol. 31:447–453.

    Article  Google Scholar 

  • Bale, J. S., T. N. Hansen, and J. G. Baust. 1989. Nucleators and sites of nucleation in the freeze tolerant larvae of the gallfly Eurosta solidaginis (Fitch). J. Insect Physiol. 35:291–298.

    Article  Google Scholar 

  • Baust, J. G. and K. E. Zachariassen. 1983. Seasonably active cell matrix associated ice nucleators in an insect. Cryo-Lett. 5:65–71.

    Google Scholar 

  • Block, W. and J. G. Duman. 1989. Presence of thermal hysteresis producing antifreeze proteins in the Antarctic mite, Alaskozetes antarcticus. J. Expt. Zool. 250:229–231.

    Article  Google Scholar 

  • Bremdal, S. and K. E. Zachariassen. 1988. Thermal hysteresis factors and supercooling of hibernating Rhagium inquisitor beetles. In Endocrinoligical Frontiers in Physiological Insect Ecology, eds.

    Google Scholar 

  • F. Sehnal, A. Zabza and D. L. Denlinger, pp. 187–191. Wroclaw Tech. Univ. Press, Wroclaw, Poland.

    Google Scholar 

  • Chino, H. 1985. Lipid transport: Biochemistry of hemolymph lipophorin. In Comprehensive Insect Physiology, Biochemistry, and Pharmacology, Vol. 10, eds. G. A. Kerkut and L. I. Gilbert, pp. 115–135. Pergamon Press, New York.

    Google Scholar 

  • Davies, P. I., C. L. Hew, and G. L. Fletcher. 1988. Fish antifreeze proteins: Physiology and evolutionary biology. Can. J. Zool. 66:2611–2617.

    Article  Google Scholar 

  • DeVries, A. L. 1968. Freezing resistance in some Antarctic fishes. Doctoral dissertation, Stanford University, Stanford, CA.

    Google Scholar 

  • DeVries, A. L. 1971. Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172:1152–1155.

    Article  Google Scholar 

  • DeVries, A. L., 1983. Antifreeze peptides and glycopeptides in cold-water fishes. Annu. Rev. Physiol. 45:245–260.

    Article  Google Scholar 

  • DeVries, A. L. 1984. Role of glycopeptides and peptides in inhibition of crystallization of water in polar fishes. Philos. Trans. R. Soc. Lond. Biol. Sci. 304:575–588.

    Article  Google Scholar 

  • DeVries, A. L. 1986. Antifreeze glycopeptides and peptides: interactions with ice and water. Methods Enzymol. 127:293–303.

    Article  Google Scholar 

  • DeVries, A. L. and Y. Lin. 1977. Structure of a peptide antifreeze and mechanism of adsorption to ice. Biochim. Biophys. Acta, 495:388–392.

    Google Scholar 

  • DeVries, A. L., J. Vandenheede, and R. E. Feeney. 1971. Primary structure of freezing point depressing proteins. J. Biol. Chem. 246:305–309.

    Google Scholar 

  • Duman, J. G. 1977a. The role of macromolecular antifreeze in the Darkling beetle Meracantha contracta. J. Comp. Physiol. 115:279–286.

    Google Scholar 

  • Duman, J. G. 1977b. Variations in macromolecular antifreeze levels in larvae of the Darkling beetle, Meracantha contracta. J. Exp. Zool. 201:85–93.

    Article  Google Scholar 

  • Duman, J. G. 1977c. The effects of temperature, photoperiod and relative humidity on antifreeze production in larvae of the Darkling beetle, Meracantha contracta. J. Exp. Zool. 201:333–337.

    Article  Google Scholar 

  • Duman, J. G. 1979a. Thermal hystereses factors in overwintering insects. J. Insect Physiol. 25:805–810.

    Article  Google Scholar 

  • Duman, J. G. 1979b. Subzero temperature tolerance in spiders: the role of thermal hysteresis factors. J. Comp. Physiol. 131:347–352.

    Google Scholar 

  • Duman, J. G. 1980. Factors involved in the overwintering survival of the freeze tolerant beetle Dendroides canadensis. J. Comp. Physiol. 136:53–59.

    Google Scholar 

  • Duman, J. G. 1982. Insect antifreezes and ice nucleating agents. Cryobiol. 19:613–627.

    Article  Google Scholar 

  • Duman, J. G. 1984a. Thermal hysteresis antifreeze proteins in the midgut fluid of overwintering larvae of the beetle Dendroides canadensis J. Exp. Zool. 230:355–361.

    Article  Google Scholar 

  • Duman, J. G. 1984b. Change in overwintering mechanism in the Cucujid beetle, Cucujus clavipis. J. Insect Physiol. 30:235–239.

    Article  Google Scholar 

  • Duman, J. G. and A. L. DeVries. 1972. Freezing behavior of aqueous solutions of glycoproteins from the blood of an Antarctic fish. Cryobiol. 9:469–472.

    Article  Google Scholar 

  • Duman, J. G. and A. L. DeVries. 1976. The isolation, characterization and physical properties of protein antifreezes from the winter flounder, Pseudopleuronectes americanus. Comp. Biochem. Physiol. 54B:375–380.

    Article  Google Scholar 

  • Duman, J. G. and K. L. Horwath. 1983. The role of hemolymph proteins in the cold tolerance of insects. Annu. Rev. Physiol. 45:261–270.

    Article  Google Scholar 

  • Duman, J. G. and J. C. Patterson. 1978. The role of ice nucleators in the frost tolerance of overwintering queens of the bald faced hornet, Vespula maculata. Comp. Biochem. Physiol. 49:69–72.

    Article  Google Scholar 

  • Duman, J. G., K. L. Horwath, A. P. Tomchaney, and J. L. Patterson. 1982. Antifreeze agents of terrestrial arthropods. Comp. Biochem. Physiol. A. 45:261–270.

    Google Scholar 

  • Duman, J. G., J. P. Morris, and F. J. Castellino. 1984. Purification and composition of an ice nucleating protein from queens of the hornet, Vespula maculata. J. Comp. Physiol. B. 154:79–83.

    Article  Google Scholar 

  • Duman, J. G., L. G. Neven, J. M. Beal, K. R. Olson, and F. J. Castellino. 1985. Freeze tolerance adaptations, including hemolymph protein and lipoprotein ice nucleators, in the larvae of the cranefly Tipula trivittata. J. Insect Physiol. 31:1–8.

    Article  Google Scholar 

  • Farrant, J. 1980. General observations on cell preservation. In Low Temperature Preservation in Biology and Medicine, eds. M. J. Ashwood-Smith and J. Farrant, pp. 1–8. University Park Press, Baltimore.

    Google Scholar 

  • Feeney, R. E. and T. S. Burcham. 1986. Antifreeze glycoproteins from polar fish blood. Annu. Rev. Biophys. Biophys. Chem. 15:59–78.

    Article  Google Scholar 

  • Fields, P. G. and J. N. McNeil. 1986. Possible dual cold-hardiness strategies in Cisseps fulvicollis (Lepidoptera: Arctiidae). Can. Entomol. 118:1309–1311.

    Article  Google Scholar 

  • Gehrken, U. 1984. Winter survival of an adult bark beetle Ips acuminatus. J. Insect Physiol. 30:421–429.

    Article  Google Scholar 

  • Gehrken, U. and L. Sømme. 1987. Increased cold hardiness in eggs of Arcynopteryx compacta (Plecoptera) by dehydration. J. Insect Physiol. 33:987–991.

    Article  Google Scholar 

  • Gordon, M. S., B. H. Amdur, and P. F. Scholander. 1962. Freezing resistance in some northern fishes. Biol. Bull. 122:52–62.

    Article  Google Scholar 

  • Green, R. L. and G. Warren. 1985. Physical and functional repetition in a bacterial ice nucleation gene. Nature 317:645–648.

    Article  Google Scholar 

  • Grimstone, A. V., A. M. Mullinger, and J. A. Ramsay. 1968. Further studies on the rectal complex of the mealworm, Tenebrio molitor (Coleoptera, Tenebrionidae). Philos. Trans. R. Soc. Biol.Sci 253:343–382.

    Article  Google Scholar 

  • Hansen, T. N. and J. G. Baust. 1988. Differential scanning calorimetric analysis of antifreeze protein activity in the common mealworm, Tenebrio molitor. Biochim. Biophys. Acta 957:217–221.

    Article  Google Scholar 

  • Hew, C. L., M. H. Kao, and Y. P. So. 1983. Presence of cystine-containing antifreeze proteins in the spruce budworm, Choristoneura fumiferana. Can. J. Zool. 61:2324–2328.

    Article  Google Scholar 

  • Hirsh, A. G., R. J. Williams, and G. T. Meryman. 1985. A novel method of natural protection: Intracellular glass formation in deeply frozen Populus. Plant Physiol. 79:41–56.

    Article  Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1982. Involvement of the circadian system in photoperiodic regulation of insect antifreeze proteins. J. Exp. Zool. 219:267–270.

    Article  Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1983a. Photoperiodic and thermal regulation of antifreeze protein levels in the beetle Dendroides canadensis. J. Insect Physiol. 29:907–917.

    Article  Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1983b. Induction of antifreeze protein production by juvenile hormone in larvae of the beetle Dendroides canadensis. J. Comp. Physiol. 151:233–240.

    Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1984a. Further studies on the involvement of the circadian system in photoperiodic control of antifreeze protein production in the beetle Dendroides canadensis. J. Insect Physiol. 30:947–955.

    Article  Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1984b. Yearly variations in the overwintering mechanism of the cold hardy beetle Dendroides canadensis. Physiol. Zool. 57:40–45.

    Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1986. Thermoperiodic involvement in antifreeze protein production in the cold hardy beetle Dendroides canadensis. Implications for photoperiodic time measurement. J. Insect Physiol. 32:799–806.

    Article  Google Scholar 

  • Husby, J. A. and K. E. Zachariassen. 1980. Antifreeze agents in the body fluid of winter active insects and spiders. Experientia 36:963–964.

    Article  Google Scholar 

  • Katagiri, C. 1985. Structure of lipophorin in insect blood: location of phospholipid. Biochim. Biophys. Acta 834:139–143.

    Google Scholar 

  • Knight, C. A. 1967. The Freezing of Supercooled Liquids. Van Nostrand, New York.

    Google Scholar 

  • Knight, C. A. 1979. Ice nucleation in the atmosphere. Adv. Coll. Int. Sci. 10:369–395.

    Article  Google Scholar 

  • Knight, C. A. and J. G. Duman. 1986. Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiol. 23:256–262.

    Article  Google Scholar 

  • Knight, C. A., A. L. DeVries, and L. D. Oolman. 1984. Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308:295–296.

    Article  Google Scholar 

  • Knight, C. A., J. Hallett, and A. L. DeVries. 1988. Solute effects on ice recrystallization: an assessment technique. Cryobiol. 25:55–60.

    Article  Google Scholar 

  • Kozloff, L. M., M. Lute, and D. Westaway. 1984. Phosphatidylinositol as a component of the ice nucleating site of Pseudomonas syringae and Erwinia herbicola. Science 226:845–846.

    Google Scholar 

  • Kozloff, L. M., M. Lute, and F. Arellano. 1987. Role of phosphatidylinositol in ice nucleation. Paper delivered at the Third International Conference on Biological Ice Nucleation, October 1987, Newport, Oregon.

    Google Scholar 

  • Kukal, O., A. S. Serianni, and J. G. Duman. 1988. Glycerol production in a freeze tolerant arctic insect, Gynaephora groenlandica: an in vivo 13C NMR study. J. Comp. Physiol. 158:175–183.

    Google Scholar 

  • Levenbook, L. 1985. Insect storage proteins. In Comprehensive Insect Physiology, Biochemistry and Pharmacology, Vol. 10, eds. G. A. Kerkut and L. I. Gilbert, pp. 307–346. Pergamon Press, New York.

    Google Scholar 

  • Lin, Y., J. G. Duman, and A. L. DeVries. 1972. Studies on the structure and activity of low molecular weight glycoproteins from an Antarctic fish. Biochem. Biophys. Res. Comm. 46:87–92.

    Article  Google Scholar 

  • Lindow, S. E. 1983. The role of bacterial ice nucleation in frost injury to plants. Annu. Rev. Phytopath. 21:363–384.

    Article  Google Scholar 

  • Loomis, S. H. 1987. Freezing in intertidal invertebrates: An update. Cryo-Lett. 8:186–195.

    Google Scholar 

  • Manavalan, P. and P. K. Ponnuswamy. 1978. Hydrophobic character of amino acid residues in globular proteins. Nature 275:673–674.

    Article  Google Scholar 

  • Mazur, P. 1984. Freezing of living cells: mechanisms and implications. Am. J. Physiol. 247:C125–C142.

    Google Scholar 

  • Miller, L. K. 1982. Cold hardiness strategies of some adult and immature insects overwintering in interior Alaska. Comp. Biochem. Physiol. 73A:595–604.

    Article  Google Scholar 

  • Neven, L. G., J. G. Duman, J. M. Beals, and F. J. Castellino. 1986. Overwintering adaptations of the stag beetle, Ceruchus piceus: removal of ice nucleators in the winter to promote supercooling. J. Comp. Physiol. 156:707–716.

    Google Scholar 

  • Neven, L. G., J. G. Duman, M. G. Low, L. C. Sehl, and F. J. Castellino. 1989. Purification and characterization of an insect hemolymph lipoprotein ice nucleator: evidence for the importance of phosphatidylinositol and apolipoprotein in the ice nucleator activity. J. Comp. Physiol. 159:71–82.

    Google Scholar 

  • Parody-Morreale, A., G. Bishop. R. Fall, and S. J. Gill. 1986. A differential scanning calorimeter for ice nucleation distribution studies—application to bacterial nucleators. Anal. Biochem. 154:682–690.

    Article  Google Scholar 

  • Parody-Morreale, A., K. P. Murphy, E. Di Cera, R. Fall, A. L. DeVries, and S. J. Gill. 1988. Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins. Nature 333:782–783.

    Article  Google Scholar 

  • Patterson, J. L. and J. G. Duman. 1978. The role of thermal hysteresis producing proteins in the low temperature tolerance and water balance of larvae of the mealworm, Tenebrio molitor. J. Exp. Biol. 74:37–45.

    Google Scholar 

  • Patterson, J. L. and J. G. Duman. 1979. Composition of a protein antifreeze from larvae of the beetle Tenebrio molitor. J. Exp. Zool. 210:361–367.

    Article  Google Scholar 

  • Patterson, J. C. and J. G. Duman. 1982. Purification and composition of protein antifreezes with high cysteine contents from larvae of the beetle Tenebrio molitor. J. Exp. Zool. 219:381–384.

    Article  Google Scholar 

  • Patterson, J. L., T. J. Kelly, and J. G. Duman. 1981. Purification and composition of a thermal hysteresis producing protein from the milkweed bug, Oncopeltus fasciatus. J. Comp. Physiol. 142:539–542.

    Google Scholar 

  • Ramsay, J. A. 1964. The rectal complex of the mealworm, Tenebrio molitor L. (Coleoptera, Tenebrionidae). Philos. Trans. R. Soc. Biol. Sci. 248:279–314.

    Article  Google Scholar 

  • Ramsay, J. A. and R. A. Brown. 1955. Simplified apparatus and procedure for freezing point determinations upon small volumes of fluid. J. Scient. Instrum. 32:372–375.

    Article  Google Scholar 

  • Rancourt, D. E., V. K. Walker, and P. L. Davies. 1987. Flounder antifreeze protein synthesis under heat shock control in transgenic Drosophila melanogaster. Mol. Cell Biol. 7:2188–2195.

    Google Scholar 

  • Raymond, J. A. and A. L. DeVries. 1977. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci. USA 74:2589–2593.

    Article  Google Scholar 

  • Raymond, J. A., P. Wilson, and A. L. DeVries. 1989. Inhibition of growth of nonbasal planes in ice by fish antifreezes. Proc. Natl. Acad. Sci. USA 86:881–885.

    Article  Google Scholar 

  • Ring, R. A. 1982. Freezing tolerant insects with low supercooling points. Comp. Biochem. Physiol. 73A:605–612.

    Article  Google Scholar 

  • Schneppenheim, R. and H. Theede. 1980. Isolation and characterization of freezing point depressing peptides from larvae of Tenebrio molitor. Comp. Biochem. Physiol. 67:561–568.

    Google Scholar 

  • Scholander, P. F., L. van Dam, J. W. Kanwisher, H. T. Hammel, and M. S. Gordon. 1957. Supercooling and osmoregulation in Arctic fish. J. Cellular Comp. Physiol. 49:5–24.

    Article  Google Scholar 

  • Shapiro, J. P., P. S. Keim, and J. H. Law. 1984. Structural studies on lipophorin, an insect lipoprotein. J. Biol. Chem. 259:3680–3685.

    Google Scholar 

  • Shapiro, J. P., M. A. Wells, and J. H. Law. 1988. Lipid transport in insects. Annu. Rev. Entomol. 33:297–318.

    Article  Google Scholar 

  • Shier, W. T., Y. Lin, and A. L. DeVries. 1975. Structure of the carbohydrate of antifreeze glycoproteins from an Antarctic fish. FEBS Lett. 54:135–138.

    Article  Google Scholar 

  • Slaughter, D., G. L. Fletcher, V. S. Ananthanarayanan, and C. L. Hew. 1981. Antifreeze proteins from the sea raven, Hemitripterus americanus. J. Biol. Chem. 256:2022–2026.

    Google Scholar 

  • Sømme, L. 1978. Nucleating agents in the haemolymph of the third instar larvae of Eurosta solidaginis (Fitch) (Diptera: Tephritidae). Norw. J. Entomol. 25:187–188.

    Google Scholar 

  • Sømme, L. 1982. Supercooling and winter survival in terrestrial arthropods. Comp. Biochem. Physiol. 73:519–543.

    Article  Google Scholar 

  • Storey, K. B. and J. M. Storey. 1988. Freeze tolerance in animals. Physiol. Rev. 68:27–84.

    Google Scholar 

  • Theede, H., R. Schneppenheim, and L. Bevess. 1976. Frostschutz—Glycoproteine bei Mytilus edulis? Mar. Biol. 36:183–189.

    Article  Google Scholar 

  • Tomchaney, A. P., J. P. Morris, S. H. Kang, and J. G. Duman. 1982. Purification, composition and physical properties of a thermal hysteresis antifreeze protein from larvae of the beetle, Tenebrio molitor. Biochem. 21:716–721.

    Google Scholar 

  • Vali, G. 1971. Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids. J. Atmos. Sci. 28:402–409.

    Article  Google Scholar 

  • Wasylyk, J. M., A. R. Tice, and J. G. Baust. 1988. Partial glass formation: a novel method of insect cryoprotection: Cryobiol. 25:451–458.

    Article  Google Scholar 

  • Wolber, P. and G. Warren. 1989. Bacterial ice-nucleation proteins. TIBS 14:179–182.

    Google Scholar 

  • Wolber, P. K., C. A. Derninger, M. W. Southworth, J. Vandekerchove, M. van Montagu, and G. Warren. 1986. Identification and purification of a bacterial ice nucleation protein. Proc. Natl. Acad. Sci. USA 83:7256–7260.

    Article  Google Scholar 

  • Wu, D. W., J. G. Duman and L. Xu. 1991. Enhancement of insect antifreeze protein activity by antibodies. Biochem. Biophys. Acta (in press).

    Google Scholar 

  • Xu, L., L. G. Neven, and J. G. Duman. 1990. Hormonal control of hemplymph lipoprotein ice nucleators in overwintering freeze susceptible larvae of the stag beetle Ceruchus piceus: Adipokinetic hormone and juvenile hormone. J. Comp. Physiol. 160: 51–59.

    Google Scholar 

  • Xu, L., and J. G. Duman. 1991. Involvement of juvenile hormone in the induction of antifreeze protein production by the fat body of larvae of the beetle Dendroides canadensis. J. Exp. Zool. (in press).

    Google Scholar 

  • Yang, D. S. C., M. Sax, A. Chakrabarthy, and C. L. Hew. 1988. Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature 333:232–237.

    Article  Google Scholar 

  • Zachariassen, K. E. 1982. Nucleating agents in cold hardy insects. Comp. Biochem. Physiol. 73:557–562.

    Article  Google Scholar 

  • Zachariassen, K. E. 1985. Physiology of cold tolerance in insects. Physiol. Rev. 65:799–832.

    Google Scholar 

  • Zachariassen, K. E. and H. T. Hammel. 1976. Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262:285–287.

    Article  Google Scholar 

  • Zachariassen, K. E. and J. A. Husby. 1982. Antifreeze effect of thermal hysteresis agents protects highly supercooled insects. Nature 298:865–867.

    Article  Google Scholar 

  • Zachariassen, K. E., J. G. Baust, and R. E. Lee. 1982. A method for the quantitative determination of ice nucleating agents in insect hemolymph. Cryobiol. 19:180–184.

    Article  Google Scholar 

  • Zettel, J. 1984. Cold hardiness strategies and thermal hysteresis in Collembola. Rev. Ecol. Biol. Sol. 21:189–203.

    Google Scholar 

Download references

Authors

Editor information

Richard E. Lee Jr. David L. Denlinger

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Chapman and Hall

About this chapter

Cite this chapter

Duman, J.G., Xu, L., Neven, L.G., Tursman, D., Wu, D.W. (1991). Hemolymph Proteins Involved in Insect Subzero-Temperature Tolerance: Ice Nucleators and Antifreeze Proteins. In: Lee, R.E., Denlinger, D.L. (eds) Insects at Low Temperature. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0190-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0190-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0192-0

  • Online ISBN: 978-1-4757-0190-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics