Skip to main content

Relationship between Cold Hardiness and Diapause

  • Chapter
Insects at Low Temperature

Abstract

Cold hardiness and diapause are both essential components of winter survival for most insects of the temperate zone. But, in many cases, it is not clear how these two are related. Are they independent events or is cold hardiness a component of the diapause syndrome? Both independence (Lees, 1955; Salt, 1961; Ring, 1972) and dependence (Asahina, 1969; Mansingh, 1971, 1974) of cold hardiness and diapause have been defended vigorously, and indeed evidence for both possibilities can be found in the literature. In this chapter I argue that cold hardiness can be achieved independently of diapause, but cold hardiness is often a component of the diapause syndrome and the expression of diapause frequently extends the insect’s capacity to cold harden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adedokun, T. A. and D. L. Denlinger. 1984. Cold-hardiness: a component of the diapause syndrome in pupae of the flesh flies, Sarcophaga crassipalpis and S. bullata. Physiol. Entomol. 9:361–364.

    Article  Google Scholar 

  • Adedokun, T. A. and D. L. Denlinger. 1985. Metabolic reserves associated with pupal diapause in the flesh fly, Sarcophaga crassipalpis. J. Insect Physiol. 31:229–233.

    Article  Google Scholar 

  • Andrewartha, H. G. 1952. Diapause in relation to the ecology of insects. Biol. Rev. 27:50–107.

    Article  Google Scholar 

  • Asahina, E. 1969. Frost resistance in insects. Adv. Insect Physiol. 6:1–49.

    Article  Google Scholar 

  • Baust, J. G. 1982. Environmental triggers to cold hardening. Comp. Biochem. Physiol. 73:563–570.

    Article  Google Scholar 

  • Baust, J. G. and R. E. Lee, Jr. 1982. Environmental triggers to cryoprotectant modulation in separate populations of the gall fly, Eurosta solidaginis (Fitch). J. Insect Physiol. 28:431–436.

    Article  Google Scholar 

  • Beck, S. D. 1980. Insect Photoperiodism, 2nd ed. Academic Press, New York.

    Google Scholar 

  • Bodnaryk, R. P. 1977. Stages of diapause development in the pupa of Mamestra configurata Wlk. J. Insect Physiol. 23:537–542.

    Article  Google Scholar 

  • Burton, V., H. K. Mitchell, P. Young, and N. S. Petersen. 1988. Heat shock protection against cold stress of Drosophila melanogaster. Mol. Cell. Biol. 8:3550–3552.

    Google Scholar 

  • Chen, C.-P., D. L. Denlinger, and R. E. Lee, Jr. 1987a. Cold-shock injury and rapid cold hardening in the flesh fly Sarcophaga crassipalpis. Physiol. Zool. 60:297–304.

    Google Scholar 

  • Chen, C.-P., D. L. Denlinger, and R. E. Lee, Jr. 1987b. Responses of nondiapausing flesh flies (Diptera: Sarcophagidae) to low rearing temperatures: developmental rate, cold tolerance, and glycerol concentrations. Ann. Entomol. Soc. Am. 80:790–796.

    Google Scholar 

  • Chino, H. 1957. Carbohydrate metabolism in the diapause egg of the silkworm, Bombyx mori—I. Diapause and the change in glycogen content. Embryologia 3:295–316.

    Article  Google Scholar 

  • Chino, H. 1958. Carbohydrate metabolism in the diapause egg of the silkworm, Bombyx mori—II. Conversion of glycogen into sorbitol and glycerol during diapause. J. Insect Physiol. 2:1–12.

    Article  Google Scholar 

  • Chippendale, G. M. 1973. Diapause of the southwestern corn borer, Diatraea grandiosella: utilization of fat body and haemolymph reserves. Entomol. Exp. Appl. 16:395–406.

    Article  Google Scholar 

  • Chippendale, G. M. 1983. Larval and pupal diapause. In Endocrinology of Insects, eds. R. G. H. Downer and H. Laufer, pp. 343–356. Alan R. Liss, New York.

    Google Scholar 

  • Cox, P. D., M. Mfon, S. Parkin, and J. E. Seaman. 1981. Diapause in a Glasgow strain of the flour moth, Ephestia kuehniella. Physiol. Entomol. 6:349–356.

    Article  Google Scholar 

  • Danks, H. V. 1987. Insect Dormancy: An Ecological Prespective. Biological Survey of Canada, Ottawa.

    Google Scholar 

  • Denlinger, D. L. 1985. Hormonal control of diapause. In Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 8, eds. G. A. Kerkut and L. I. Gilbert, pp. 353–412. Pergamon Press, Oxford.

    Google Scholar 

  • Denlinger, D. L. 1986. Dormancy in tropical insects. Annu. Rev. Entomol. 31:239–264.

    Article  Google Scholar 

  • Denlinger, D. L., J. H. Willis, and G. Fraenkel. 1972. Rates and cycles of metabolism in diapausing Sarcophaga pupae. J. Insect Physiol. 18:871–882.

    Article  Google Scholar 

  • Denlinger, D. L., J. Giebultowicz, and T. Adedokun. 1988. Insect diapause: dynamics of hormone sensitivity and vulnerability to environmental stress. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A. Zabza, and D. L. Denlinger, pp. 309–324. Wroclaw Technical University Press, Wroclaw.

    Google Scholar 

  • Duman, J. G. 1977. Environmental effects on antifreeze levels in larvae of the darkling beetle, Meracantha contracta. J. Exp. Biol. 201:333–337.

    Google Scholar 

  • Fields, P. G. and J. N. McNeil. 1988. The cold-hardiness of Ctenucha virginica (Lepidoptera: Arctiidae) larvae, a freezing-tolerant species. J. Insect Physiol. 34:269–277.

    Article  Google Scholar 

  • Frankos, V. H. and A. P. Platt. 1976. Glycerol accumulation and water content in larvae of Limenitis archippus: their importance to winter survival. J. Insect Physiol. 22:623–628.

    Article  Google Scholar 

  • Goettel, M. S. and B. J. R. Philogene. 1980. Further studies on the biology of the banded woolybear, Pyrrharctia (Isia) Isabella (J. E. Smith) (Lepidoptera: Arctiidae). IV. Diapause development as influenced by temperature. Can. J. Zool. 58:317–320.

    Article  Google Scholar 

  • Hamilton, M. D., R. R. Rojas, and J. G. Baust. 1986. Juvenile hormone: modulation of cryoprotectant synthesis in Eurosta solidaginis by a component of the endocrine system. J. Insect Physiol. 32:971–979.

    Article  Google Scholar 

  • Hanec, W. and S. D. Beck. 1960. Cold hardiness in the European corn borer, Pyrausta nubilalis (Hubn.). J. Insect Physiol. 5:169–180.

    Article  Google Scholar 

  • Henrich, V. C. and D. L. Denlinger. 1982a. A maternal effect that eliminates pupal diapause in progeny of the flesh fly, Sarcophaga bullata. J. Insect Physiol. 28:881–884.

    Article  Google Scholar 

  • Henrich, V. C. and D. L. Denlinger. 1982b. Selection for late pupariation affects diapause incidence and duration in the flesh fly, Sarcophaga bullata. Physiol. Entomol. 7:407–411.

    Article  Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1982. Involvement of the circadian system in photoperiodic regulation of insect antifreeze proteins. J. Exp. Zool. 219:269–270.

    Article  Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1983a. Photoperiodic and thermal regulation of antifreeze protein levels in the beetle Dendroides canadensis. J. Insect Physiol. 29:907–917.

    Article  Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1983b. Preparatory adaptations for winter survival in the cold hardy beetles, Dendroides canadensis and Dendroides concolor. J. Comp. Physiol. 151:225–232.

    Google Scholar 

  • Horwath, K. L. and J. G. Duman. 1983c. Induction of antifreeze protein production by juvenile hormone in larvae of the beetle, Dendroides canadensis. J. Comp. Physiol. 151:233–240.

    Google Scholar 

  • Hoy, M. A. 1978. Variability in diapause attributes of insects and mites: some evolutionary and practical implications. In Evolution of Insect Migration and Diapause, ed. H. Dingle, pp. 101–126. Springer, New York.

    Chapter  Google Scholar 

  • Kageyama, T. and E. Ohnishi. 1973. Carbohydrate metabolism in the eggs of the silkworm, Bombyx mori. II. Anaerobiosis and polyol formation. Dev. Growth Different. 15:47–55.

    Article  Google Scholar 

  • Kimura, M. T. 1982. Inheritance of cold hardiness and sugar contents in two closely related species, Drosophila takahashii and D. lutescens. Jap. J. Genet. 57:575–580.

    Article  Google Scholar 

  • Kukal, O. and J. G. Duman. 1989. Switch in the overwintering strategy of two insect species and latitudinal differences in cold hardiness. Can. J. Zool. 67:825–827.

    Article  Google Scholar 

  • Kukal, O., J. G. Duman, and A. S. Serianni. 1989. Cold-induced mitochondrial degradation and cryoprotectant synthesis in freeze-tolerant arctic caterpillars. J. Comp. Physiol. 158:661–671.

    Google Scholar 

  • Lee, R. E., Jr. and D. L. Denlinger. 1985. Cold tolerance in diapausing and non-diapausing stages of the flesh fly, Sarcophaga crassipalpis. Physiol. Entomol. 10:309–315.

    Article  Google Scholar 

  • Lee, R. E., Jr., C-P. Chen, M. H. Meacham, and D. L. Denlinger. 1987a. Ontogenetic patterns of cold-hardiness and glycerol production in Sarcophaga crassipalpis. J. Insect Physiol. 33:587–592.

    Article  Google Scholar 

  • Lee, R. E., Jr., C-P. Chen, and D. L. Denlinger. 1987b. A rapid cold-hardening process in insects. Science 238:1415–1417.

    Article  Google Scholar 

  • Lee, R. E., Jr., D. L. Denlinger, and C-P. Chen. 1988. Insect cold-hardiness and diapause: regulatory relationships. In Endocrinological Frontiers in Physiological Insect Ecology, eds. F. Sehnal, A. Zabza, and D. L. Denlinger, pp. 243–262. Wroclaw Technical University Press, Wroclaw.

    Google Scholar 

  • Lees, A. D. 1955. The Physiology of Diapause in Arthropods. Cambridge Univeristy Press, Cambridge.

    Google Scholar 

  • Lefevere, K. S., A. B. Koopmanschap, and C. A. D. de Kort. 1989. Changes in the concentrations of metabolites in haemolymph during and after diapause in female Colorado potato beetle, Leptinotarsa decemlineata. J. Insect Physiol. 35:121–128.

    Article  Google Scholar 

  • Mansingh, A. 1971. Physiological classification of dormancies in insects. Can. Entomol. 103:983–1009.

    Article  Google Scholar 

  • Mansingh, A. 1974. Studies on insect dormancy. II. Relationship of cold-hardiness to diapause and quiescence in the eastern tent caterpillar, Malacosoma americanum (Fab.), (Lasiocampidae: Lepidoptera). Can. J. Zool. 52:629–637.

    Article  Google Scholar 

  • Mansingh, A. and B.N. Smallman. 1972. Variation in polyhydric alcohol in relation to diapause and cold-hardiness in the larvae of Isia Isabella. J. Insect Physiol. 18:1565–1571.

    Article  Google Scholar 

  • Masaki, S. 1980. Summer diapause. Annu. Rev. Entomol. 25:1–25.

    Article  Google Scholar 

  • Meats, A. 1983. Critical periods for developmental acclimation to cold in the Queensland fruit fly, Dacus tryoni. J. Insect Physiol. 29:943–946.

    Article  Google Scholar 

  • Meyer, S. G. E. 1978. Effects of heat, cold, anaerobiosis and inhibitors on metabolite concentrations in larvae of Callitroga macellaria. Insect Biochem. 8:471–477.

    Article  Google Scholar 

  • Morris, G. J, G. Coulson, M. A. Meyer, M. R. McLellan, B. J. Fuller, B. W. W. Grout, H. W. Pritchard, and S. C. Knight. 1983. Cold shock—a widespread cellular reaction. Cryo-Lett. 4:179–192.

    Google Scholar 

  • Nordin, J. H., Z. Cui, and C-M. Yin. 1984. Cold-induced glycerol accumulation by Ostrinia nubialis larvae is developmentally regulated. J. Insect Physiol. 30:563–566.

    Article  Google Scholar 

  • Patterson, J. L. and J. G. Duman. 1978. The role of the thermal hysteresis factor in Tenebrio molitor larvae. J. Exp. Biol. 74:37–45.

    Google Scholar 

  • Pio, C. J. and J. G. Baust. 1988. Effects of temperature cycling on cryoprotectant profiles in the goldenrod gall fly, Eurosta solidaginis (Fitch). J. Insect Physiol. 34:767–771.

    Article  Google Scholar 

  • Ring, R. A. 1972. Relationship between diapause and supercooling in the blowfly, Lucilia sericata (Mg.) (Diptera: Calliphoridae). Can J. Zool. 50:1601–1605.

    Article  Google Scholar 

  • Rojas, R. R., M. D. Hamilton, and J. G. Baust. 1987. Juvenile hormone modulation of insect cold hardening: ice-nucleating activity. Cryobiol. 24:465–472.

    Article  Google Scholar 

  • Salt, R. W. 1958. Application of nucleation theory to the freezing of supercooled insects. J. Insect Physiol. 2:178–188.

    Article  Google Scholar 

  • Salt, R. W. 1959. Role of glycerol in the cold-hardening of Bracon cephi (Gahan). Can. J. Zool. 37:59–69.

    Article  Google Scholar 

  • Salt, R. W. 1961. Principles of insect cold-hardiness. Annu. Rev. Entomol. 6:55–74.

    Article  Google Scholar 

  • Saunders, D. S. 1982. Insect Clocks, 2nd ed. Pergamon Press, Oxford.

    Google Scholar 

  • Saunders, D. S., V. C. Henrich, and L. I. Gilbert. 1989. Induction of diapause in Drosophila melanogaster. photoperiodic regulation and the impact of arrhythmic clock mutations on time measurement. Proc. Natl. Acad. Sci. USA 86:3748–3752.

    Article  Google Scholar 

  • Shimada, K. 1982. Glycerol accumulation in developmentally arrested pupae of Papilio machaon obtained by brain removal. J. Insect Physiol. 28:975–978.

    Article  Google Scholar 

  • Shimada, K. 1989. Ice-nucleating activity in the alimentary canal of the freezing-tolerant prepupae of Trichiocampus populi (Hymenoptera: Tenthredinidae). J. Insect Physiol. 35:113–120.

    Article  Google Scholar 

  • Siegelt, K. J. 1987. Carbohydrate metabolism in starved fifth instar larvae of Manduca sexta. Arch. Insect Biochem. Physiol. 4:151–160.

    Article  Google Scholar 

  • Siegelt, K. J. and R. Ziegler. 1983. A hormone from the corpora cardiaca controls fat body glycogen Phosphorylase during starvation in tobacco hornworm larvae. Nature 301:526–527.

    Article  Google Scholar 

  • Sømme, L. 1965. Further observations on glycerol and cold-hardiness in insects. Can. J. Zool. 43:765–770.

    Article  Google Scholar 

  • Sømme, L. 1966. The effect of temperature, anoxia, or injection of variuos substances on haemolymph composition and supercooling in larvae of Anagasta kuehniella (Zell.). J. Insect Physiol. 12:1069–1083.

    Article  Google Scholar 

  • Sømme, L. and K. E. Zachariassen. 1981. Adaptations to low temperature in high altitude insects from Mount Kenya Ecol. Entomol. 6:199–204.

    Article  Google Scholar 

  • Tauber, M. J., C. A. Tauber, and S. Masaki. 1986. Seasonal Adaptations of Insects. Oxford University Press, New York.

    Google Scholar 

  • Tsumuki, H. 1980. Effect of anaerobiosis on glycerol formation in larvae of the rice stem borer, Chilo suppressalis Walker. Appl. Entomol. Zool. 15:52–59.

    Google Scholar 

  • Tsumuki, H. and K. Kanehisa. 1980. Effect of low temperature on glycerol and trehalose concentration in haemolymph of the rice stem borer, Chilo suppressalis Walker. Jap. J. Appl. Entomol. Zool. 24:189–193.

    Article  Google Scholar 

  • Tsumuki, H. and K. Kanehisa. 1981. Effect of JH and ecdysone on glycerol and carbohydrate contents in diapausing larvae of the rice stem boer, Chilo suppressalis Walker (Lepidoptera: Pyralidae). Appl. Entomol. Zool. 16:7–15.

    Google Scholar 

  • Tsutsui, H., Y. Hirai, K. Honma, K. Tanno, K. Shimada, and S. F. Sakagami. 1988. Aspects of overwintering in the cabbage armyworm, Mamestra hrassicae (Lepidoptera: Noctuidae) I. Supercooling points and contents of glycogen and trehalose in pupae. Appl. Entomol Zool. 23:52–57.

    Google Scholar 

  • Tucic, N. 1979. Genetic capacity for adaptation to cold resistance at different developmental stages of Drosophila melanogaster. Evolution 33:350–358.

    Article  Google Scholar 

  • Wood, F. E., Jr. and J. H. Nordin. 1976. Studies on the low temperature induced biogenesis of glycerol by adult Protophormia terranovae. J. Insect Physiol. 22:1665–1673.

    Article  Google Scholar 

  • Woude, H. A. van der, and H. A. Verhoef. 1988. Reproductive diapause and cold hardiness in temperate Collembola Orchesella cincta and Tomocerus minor. J. Insect Physiol. 34:387–392.

    Article  Google Scholar 

  • Wyatt, G. R. and W. L. Meyer. 1959. The chemistry of insect haemolymph. III. Glycerol. J. Gen. Physiol. 42:1005–1011.

    Article  Google Scholar 

  • Yaginuma, T. and O. Yamashita. 1977. Changes in glycogen, sorbitol and glycerol content during diapause of the silkworm eggs. J. Sericult, Sci. Jap. 46:5–10.

    Google Scholar 

  • Yaginuma, T. and O. Yamashita. 1986. Malate-aspartate cycle as an effective hydrogen shuttle at the termination of diapause in the eggs of Bombyx mori. Insect Biochem. 16:677–685.

    Article  Google Scholar 

  • Yamashita, O. and K. Hasegawa. 1985. Embryonic diapause. In Comprehensive Insect Physiology Biochemistry and Pharmacology, Vol. 1, eds. G. A. Kerkut and L. I. Gilbert, pp. 407–434. Pergamon Press, Oxford.

    Google Scholar 

  • Young, S. R. and W. Block. 1980. Experimental studies on the cold tolerance of Alaskozetes antarcticus. J. Insect Physiol. 26:189–200.

    Article  Google Scholar 

  • Zachariassen, K. E. and A. Pasche. 1976. Effect of anaerobiosis on the adult cerambycid beetle, Rhagium inquisitor L. J. Insect Physiol. 22:1365–1368.

    Article  Google Scholar 

  • Zaslavski, V. A. 1988. Insect Development: Photoperiodic and Temperature Control. Springer-Verlag, Berlin.

    Google Scholar 

  • Ziegler, R., M. Ashida, A. M. Fallon, L. T. Wimer, S. S. Wyatt, and G. R. Wyatt. 1979. Regulation of glycogen Phosphorylase in fat body of Cecropia silkmoth pupae. J. Comp. Physiol. 131:321–332.

    Google Scholar 

Download references

Authors

Editor information

Richard E. Lee Jr. David L. Denlinger

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Chapman and Hall

About this chapter

Cite this chapter

Denlinger, D.L. (1991). Relationship between Cold Hardiness and Diapause. In: Lee, R.E., Denlinger, D.L. (eds) Insects at Low Temperature. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0190-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0190-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0192-0

  • Online ISBN: 978-1-4757-0190-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics