Skip to main content

The Rheology of Blood in Microvessels

  • Chapter
Biomechanics
  • 1250 Accesses

Abstract

The concept of viscosity has been discussed in Chapters 2 and 3. We have shown that the viscosity of whole blood is non-Newtonian. But the discussion so far has considered blood as a homogeneous fluid. We know, of course, that blood is not homogeneous: it is normally a concentrated mixture with almost half its volume occupied by suspended red blood cells. There are occasions when it is useful to consider blood as a homogeneous fluid, and there are other occasions when it is necessary to consider red blood cells as acting individually. For example, in studying the pulse waves in arteries whose diameters are many times larger than the red cell diameter, we can treat blood as a homogeneous fluid. On the other hand, in studying the flow of blood in capillary blood vessels whose diameters are about the same as the diameter of the red cells, we have to consider blood as a suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barbee, J. H., and Cokelet, G. R. (1971) Microvascular Res. 3, 6–21.

    Article  Google Scholar 

  • Benis, A. M., Chien, S., Usami, S., and Jan, K. M. (1973) J. Appl. Physiol. 34, 383–389.

    Google Scholar 

  • Braasch, D. (1967) Pflügers Arch. ges. Physiol. 296, 143–147.

    Article  Google Scholar 

  • Braasch, D. and Jennett, W. (1968) Pflügers Archiv. ges. Physiol. 302, 245–254.

    Article  Google Scholar 

  • Caro, C. G., Pedley, T. J., Schroter, R. C., and Seed, W. A. (1978) The Mechanics of circulation. Oxford Univ. Press, New York.

    Google Scholar 

  • Chien, S. (1972) In Hemodilution: Theoretical Basis and Clinical Application, Messmer, K., and Schmid-Schoenbein, H. (eds.). Karger, Basel, pp. 1–45.

    Google Scholar 

  • Fahraeus, R. (1929) Physiol. Rev. 9, 241–274.

    Google Scholar 

  • Fahraeus, R., and Lindqvist, T. (1931) Am. J. Physiol. 96, 562–568. Fitz-Gerald, J. M. (1969a) Proc. Roy. Soc. London, B, 174, 193–227. Fitz-Gerald, J. M. (1969b) J. Appl. Physiol. 27, 912–918.

    Google Scholar 

  • Fitz-Gerald, J. M. (1972) In Cardiovascular Fluid Dynamics, Bergel, D. H. (ed.). Academic, New York, Vol. 2, Chap. 16, pp. 205–241.

    Google Scholar 

  • Fung, Y. C. (1969a) J. Biomechanics 2, 353–373.

    Article  Google Scholar 

  • Fung, Y. C. (1969b) Proc. Canad. Congr. Appl. Mechanics, May, 1969. University of Waterloo, Canada, pp. 433–454.

    Google Scholar 

  • Fung, Y. C. (1973) Microvascular Res. 5, 34–48.

    Article  Google Scholar 

  • Goldsmith, H. L. (1971) Biorheology 7, 235–242.

    Google Scholar 

  • Goldsmith, H. L. and Skalak, R. (1975) Ann. Rev. Fluid Mech. 7, 213–247. Gross, J. F., and Aroesty, J. (1972) Biorheology 9, 255–264.

    Google Scholar 

  • Haynes, R. H. (1960) Am. J. Physiol. 198, 1193–1200.

    Google Scholar 

  • Hochmuth, R. M., Maple, R. N., and Sutera, S. P. (1970) Microvascular Res 2 409419.

    Google Scholar 

  • Jay, A. W. C., Rowlands, S. and Skibo, L. (1972) Canad. J. Physiol. Pharmacol. 5, 1007–1013.

    Article  Google Scholar 

  • Johnson, P. C., and Wayland, H. (1967) Am. J. Physiol. 212, 1405–1415.

    Google Scholar 

  • Kot, P. (1971) Motion picture shown at the Annual Meeting of the Microcirculatory Society, Atlantic City, N.J., April, 1971.

    Google Scholar 

  • Lee, J. S. (1969) J. Biomechanics 2, 187–198.

    Article  Google Scholar 

  • Lee, J. S., and Fung, Y. C. (1969) Microvascular Res. 1, 221–243.

    Article  Google Scholar 

  • Lew, H. S., and Fung, Y. C. (1969a) Biorheology 6, 109–119. Lew, H. S., and Fung, Y. C. (1969b) J. Biomechanics 2, 105–119.

    Google Scholar 

  • Lew, H. S., and Fung, Y. C. (1970a) J. Biomechanics 3, 23–38. Lew, H. S., and Fung, Y. C. (1970b) Biophys. J. 10, 80–99. Lighthill, M. J. (1968) J. Fluid Mech. 34, 113–143.

    Google Scholar 

  • Lighthill, M. J. (1972) J. Fluid Mech. 52, 475–497.

    Article  ADS  MATH  Google Scholar 

  • Mason, S. G., and Goldsmith, H. L. (1969) In Circulatory and Respiratory Mass Transport. A ciba Foundation Symposium, Wolstenholme, G. E. W. and Knight, J. (eds.) Churchill, London, p. 105.

    Google Scholar 

  • Prothero, J., and Burton, A. C. (1961) Biophysical J. 1, 565–579; 2, 199–212; 2, 213, 222. 1962.

    ADS  Google Scholar 

  • Segre, G., and Silberberg, A. (1962) J. Fluid Mech. 14, 136–157.

    Article  ADS  Google Scholar 

  • Seshadri, V., Hochmuth, R. M., Croce, P. A., and Sutera, S. P. (1970) Microvascular Res. 2, 424–434.

    Article  Google Scholar 

  • Skalak, R. (1972) In Biomechanics: Its Foundations and Objectives, Fung, Y. C., Perrone, N., and Anliker, M. (eds.). Prentice-Hall, Englewood Cliffs, N.J., pp. 457–500.

    Google Scholar 

  • Skalak, R., Chen, P. H., and Chien, S. (1972) Biorheology 9, 67–82.

    Google Scholar 

  • Skalak, R. (1973) Bioreology 10, 229–238.

    Google Scholar 

  • Sobin, S. S., Tremer, H. M., and Fung, Y. C. (1970) Circulation Res. 26, 397–414.

    Article  Google Scholar 

  • Sobin, S. S., Fung, Y. C., Tremer, H. M., and Rosenquist, T. H. (1972) Circulation Res. 30, 440–450.

    Article  Google Scholar 

  • Sobin, S. S., Fung, Y. C., Tremer, H. M., and Lindal, R. G. (1979). Microvascular Res 17 (3, part 2, Abstract), p. S 87.

    Google Scholar 

  • Sutera, S. P. (1978) J. Biomech. Eng. Trans. ASME 100(3), 139–148. Sutera, S. P., and Hochmuth, R. M. (1968) Biorheology 5, 45–73.

    Google Scholar 

  • Sutera, S. P., Seshadri, V., Croce, P. A., and Hochmuth, R. M. (1970) Microvascular Res. 2, 420–442.

    Article  Google Scholar 

  • Svanes, K., and Zweifach, B. W. (1968) Microvascular Res. 1, 210–220.

    Article  Google Scholar 

  • Warrell, D. A., Evans, J. W., Clarke, R. O., Kingaby, G. P., and West, J. B. (1972) J. Appl. Physiol. 32, 346–356.

    Google Scholar 

  • Yen, R. T., and Fung, Y. C. (1973) J. Appl. Physiol. 35, 510–517. Yen, R. T., and Fung, Y. C. (1977) J. Appl. Physiol. 42 (4), 578–586.

    Google Scholar 

  • Yen, R. T., and Fung, Y. C. (1978) Am. J. of Physiol. 235 (2): H251 — H257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, Y.C. (1981). The Rheology of Blood in Microvessels. In: Biomechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1752-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1752-5_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1754-9

  • Online ISBN: 978-1-4757-1752-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics