Skip to main content

The Heart

  • Chapter
Biodynamics
  • 358 Accesses

Abstract

The heart is the prime mover of blood. By periodic stimulation of its muscles it contracts periodically and pumps blood throughout the body. How the pump works is the subject of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bellhouse, B. J. (1972). The fluid mechanics of heart valves. In Cardiovascular Fluid Dynamics(D. H. Bergel ed.), Vol. 1, Academic Press, New York, Ch. 8, pp. 261–285.

    Google Scholar 

  • Bellhouse, B. J. and Bellhouse, F. H. (1969). Fluid mechanics of model normal and stenosed aortic valves. Circulation Research, 25: 693–704.

    Google Scholar 

  • Bellhouse, B. J. and Bellhouse, F. H. (1972). Fluid mechanics of a model mitral valve and left ventricle. Cardiovascular Research 6: 199–210.

    Article  Google Scholar 

  • Berne, R. M., Sperelakis, N. (ed.) (1979). Handbook of Physiology. Sec. 2. The Cardiovascular System, Vol. 1. The Heart. American Physiological Society, Bethesda, Md.

    Google Scholar 

  • Bohr, D. F., Somlyo, A. P., and Spark, H. V., Jr. (eds.) (1980). Handbook of Physiology. Sec. 2. The Cardiovascular System. Vol. 2. Vascular Smooth Muscle. American Physiological Society, Bethesda, Md.

    Google Scholar 

  • Brady, A. J. (1979). Mechanical properties of cardiac fibers. In Handbook of Physiology, Sec. 2, Vol. 1. The Heart. (Berne, R. M. and Sperelakis, N. eds.), American Physiological Society, Bethesda, Md, pp. 461–474.

    Google Scholar 

  • Chadwick, R. S. (1981). The myocardium as a fluid-fiber continuum: passive equilibrium configurations. In 1981 Advances in Bioengineering(Viano, D. C. ed.), American Society of Mechanical Engineers, New York, pp. 135–138.

    Google Scholar 

  • Chuong, C. J. and Fung, Y. C. (1983). Three-dimensional stress distribution in arteries. J. Biomechanical Engineering. 105: 268–274.

    Article  Google Scholar 

  • Danielson, D. A. (1977). Mechanics of muscular organs. Journal of Biomechanics 10: 355–356.

    Article  Google Scholar 

  • Durrer, D., and van der Tweel, L. H. (1957). Excitation of the left ventricular wall of the dog and goat. Ann. New York Academy of Science, 65: 779–802.

    Article  ADS  Google Scholar 

  • Edman, K. A. P. and Nilsson, E. (1972). Relationship between force and velocity of shortening in rabbit papillary muscle. Acta Physiol. Scand. 85: 488–500.

    Article  Google Scholar 

  • Frank, O. (1899). Die grundform des arteriellen pulses. Erste Abhandlung, Mathematische Analyse. Z. Biol. 37: 483–526.

    Google Scholar 

  • Fung Y. C. (1965). Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, N. J.

    Google Scholar 

  • Fung, Y. C. (1970). Mathematical representation of the mechanical properties of the heart muscle. J. of Biomechanics. 3: 381–404.

    Article  Google Scholar 

  • Fung, Y. C. (1971a). Muscle controlled flow. In Development in Mechanics, Proc. of 12th Midwest Mechanics Conf. Vol. 6, Univ. of Notre Dame, Ind, art. 3, pp. 33–62.

    Google Scholar 

  • Fung, Y. C. (1971b). Peristaltic pumping: A bioengineering model. In Urodynamics: Hydrodynamics of the Ureter and Renal Pelvis. (Boyarsky, S., Gottschalk, C. W., Tanago, E. A. and Zimskind, P. D., eds.) Academic Press, New York.

    Google Scholar 

  • Fung, Y. C. (1977). A First Course in Continuum Mechanics. 2nd edn. Prentice-Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Fung, Y. C. (1981). Biomechanics: Mechanical Properties of Biological Materials. Springer-Verlag, New York.

    Google Scholar 

  • Fung, Y. C. (1984). Biodynamits: Flow, Motion, and Stress. Springer-Verlag, New York. In press.

    Google Scholar 

  • Gay, W. A. and Johnson, E. A. (1967). Anatomical evaluation of the myocardial length-tension diagram. Circulation Research 21: 33–43.

    Article  Google Scholar 

  • Gorlin, R. and Gorlin, S. G. (1951). Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. Am. Heart J. 41: 1–29.

    Article  Google Scholar 

  • Hales, S. (1733). Statical Essays. II. Haemostaticks. Innays and Manby, London, Reprinted by Hafner, New York.

    Google Scholar 

  • Henderson, Y. and Johnson, F. E. (1912). Two modes of closure of the heart valves. Heart. 4: 69–82.

    Google Scholar 

  • Hill, A. V. (1939). The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. London (Biol.) B. 126: 136–195.

    Article  ADS  Google Scholar 

  • Hort, W. (1960). Makroskopische und mikrometrische untersuchungen am Myokard verschieden stark gefullter linker kammern. Virchows Arch Path. Anat. 333: 523–564.

    Google Scholar 

  • Iwazumi, T. (1970). A new field theory of muscle contraction. Ph. D. Thesis, University of Pennsylvania, Pa.

    Google Scholar 

  • Janz, R. F. and Grimm, A. F. (1973). Deformation of the diastolic left ventricle. I. Nonlinear elastic effects. Biophys. J. 13: 689–704.

    Article  ADS  Google Scholar 

  • Janz, R. F., Grimm, A. F., Kubert, B. R., and Moriarty, T. F. (1974). Deformation of the diastolic left ventricle. II. Nonlinear geometric effects. J. of Biomechanics 7: 509–516.

    Article  Google Scholar 

  • Janz, R. F. and Waldron, R. J. (1976). Some implications of a constant fiber stress hypothesis in the diastolic left ventricle. Bull. Math. Biol. 38: 401–413.

    Google Scholar 

  • Jones, R. T. (1969). Blood flow. In Annual Review of Fluid Mechanics(W. R. Sears and M. van Dyke, eds.) Annual Reviews, Palo Alto, Ca.

    Google Scholar 

  • Jones, R. T. (1972). Fluid dynamics of heart assist devices. In Biomechanics: Its Foundations and Objectives. (ed. by Y. C. Fung, N. Perrone, and M. Anliker), PrenticeHall, Englewood Cliffs, N.J., Chapter 21, pp. 549–565.

    Google Scholar 

  • Lamé, E. (1852). Lecons sur la theorie de l’elasticite. Paris.

    Google Scholar 

  • Lee, C. S. F. and Talbot, L. (1979). A fluid mechanical study on the closure of heart valves. J. Fluid Mechanics 91(1): 41–63.

    Article  ADS  Google Scholar 

  • McDonald, D. A. (1974). Blood Flow in Arteries. Williams & Wilkins, Baltimore, Md.

    Google Scholar 

  • Milnor, W. R. (1975). Arterial impedance as ventricular afterload. Circulation Res. 36: 565–570.

    Article  Google Scholar 

  • Mirsky, I. (1973). Ventricular and arterial wall stresses based on large deformation analysis. Biophysical J. 13: 1141–1159.

    Article  MathSciNet  ADS  Google Scholar 

  • Mirsky, I., Ghista, D. N., and Sandler, H. (eds.) (1974). Cardiac Mechanics: Physiological, Clinical, and Mathematical Considerations. John Wiley & Sons Inc., New York.

    Google Scholar 

  • Mirsky, I. (1979). Elastic properties of the myocardium: a quantitative approach with physiological and clinical applications. In Handbook of Physiology, Sec. 2, Vol. 1. The Heart. (Berne, R. M. and Sperelakis, N. eds.), American Physiological Society, Bethesda, Md., pp. 497–531.

    Google Scholar 

  • Netter, F. (1969). The Ciba Collection of Medical Illustrations, Vol. 5, Heart, CIBA Publications Dept., Summit, N.J.

    Google Scholar 

  • Parmley, W. W. and Sonnenblick, E. H. (1967). Series elasticity of heart muscle: Its relation to contractile element velocity and proposed muscle models, Circulation Res. 20: 112–123.

    Article  Google Scholar 

  • Parmley, W. W., Brutsaert, D. L. and Sonnenblick, E. H. (1969). The effects of altered loading on contractile events in isolated cat papillary muscle. Circulation Res. 24: 521–532.

    Article  Google Scholar 

  • Parmley, W. and Talbot, L. (1979). Heart as a pump. In Handbook of Physiology. Sec. 2. The Cardiovascular System, Vol. 1, The Heart. (Berne, R. M. and Sperelakis, N. eds.), American Physiological Society, Bethesda, Md., pp. 429–460.

    Google Scholar 

  • Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. J. Comput. Phys. 25: 220–252.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Peskin, C. S. and Wolfe, A. W. (1978). The aortic sinus vortex. Federation Proc. 37: 2784–2792.

    Google Scholar 

  • Pinto, J. G. and Fung, Y. C. (1973a). Mechanical properties of the heart muscle in the passive state. J. Biomechanics 6: 597–616.

    Article  Google Scholar 

  • Pinto, J. G. and Fung, Y. C. (1973b). Mechanical properties of stimulated papillary muscle in quick-release experiments. J. Biomechanics 6: 617–630.

    Article  Google Scholar 

  • Scher, A. M. and Spach, M. S. (1979). Cardiac depolarization and repolarization and the electrocardiogram. In Handbook of Physiology, Sec. 2, Vol. 1, The Heart. (Berne, R. M. and Sperelakis, N., eds.), American Physiological Society, Bethesda, Md., pp. 357–392.

    Google Scholar 

  • Skalak, R. (1982). Approximate formulas for myocardial fiber stresses. J. Biomechanical Engineering. 104: 162–163.

    Article  Google Scholar 

  • Sonnenblick, E. H. (1962). Implications of muscle mechanics in the heart. Federation Proc. 21: 975–990.

    Google Scholar 

  • Sonnenblick, E. H. (1964). Series elastic and contractile elements in heart muscle: changes in muscle length. Am. J. Physiol. 207: 1330–1338.

    Google Scholar 

  • Sonnenblick, E. H., Braunwald, E., Covell, J. W., and Ross, Jr., J. (1966). Alterations in resting length-tension relations of cardiac muscle induced by changes in contractile force. Circulation Res. 19: 980–988.

    Article  Google Scholar 

  • Sonnenblick, E. H., Spotnitz, H. and Spiro, D. (1964). The relation of sarcomere structure to the pressure-volume curve of the intact dog ventricle. Supp. III to Circulation, Vol. 29–30, p. 111–163.

    Google Scholar 

  • Sonnenblick, E. H., Ross, Jr., Jr, Covell, J. W., Spotnitz, H. M. and Spiro, D. (1967). Ultrastructure of the heart in systole and diastole: changes in sarcomere length. Circulation Res. 21: 423–431.

    Article  Google Scholar 

  • Streeter, D. Jr. (1979). Gross morphology and fiber geometry of the heart. In Handbook of Physiology, Sec. 2, Cardiovascular System. Vol. 1. The Heart(Berne, R. M. and Sperelakis, N. eds.), American Physiology Society, Bethesda, Md., pp. 61–112.

    Google Scholar 

  • Streeter, D., Jr., Spotnitz, H. M., Patel, D. J., Ross, J. Jr., and Sonnenblick, E. H. (1969). Fiber orientation in the canine left ventricle during diastole and systole. Circulation Res. 24: 339–347.

    Article  Google Scholar 

  • Streeter, D., Jr., and Hanna, W. T. (1973). Engineering mechanics for successive states in canine left ventricular myocardium. I. Cavity and Wall Geometry. II. Fiber angle and sarcomere length. Circulation Res. 33: 639–655(I), 656–664(II).

    Article  Google Scholar 

  • Suga, H., Sagawa, K. and Shoukas, A. A. (1973). Load independence of the instantaneous pressure-volume ratio of the canine left ventricle and effects of epinephrine and heart rate on the ratio. Circulation 32: 314–322.

    Article  Google Scholar 

  • Waldman, L. K. (1983). On the mechanical coupling of the Heart to the Circulation. Ph.D. thesis. University of California, San Diego.

    Google Scholar 

  • Wetterer, E. and Kenner, T. (1968). Die Dynamik des Arterien pulses. Springer-Verlag, New York & Berlin.

    Google Scholar 

  • Wong, A. Y. K. and Rautaharju, P. M. (1968). Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell. Am. Heart J. 75: 649–662.

    Article  Google Scholar 

  • Yoran, C., Covell, J. W., and Ross, J., Jr. (1973). Structural basis for the ascending limb of left ventricular function. Circulation Res. 32: 297–303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fung, Y.C. (1984). The Heart. In: Biodynamics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3884-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3884-1_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3886-5

  • Online ISBN: 978-1-4757-3884-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics