Skip to main content

Abstract

In Chapter 2, expressions were derived for the rates of the reactions given by the general stoichiometric equations, Eqs. (2.19)–(2.21). Intracellular representatives for substrates and metabolic products were introduced in order to emphasize the central role of the cell as the chemical reactor wherein the reactions take place. Thus Eq. (2.17) or Eq. (2.20) describes J reactions with N+L+M reactants and products, which coexist inside the cell envelope. Substrate uptake and product excretion reactions can also lead to changes in the cell composition X, as shown in Examples 2.3 and 2.12 and continued in Example 2.14, whereas the simple membrane transport mechanism illustrated in Example 2.13 effectively removes any difference between external and internal substrates. The coupling between internal reactions and membrane transport reactions will be further treated in Chapter 4, but at the present stage of our development it is convenient to condense the general stoichiometry in Eqs. (2.19)–(2.21) to

$$ As + Bp + \Gamma X = (AB\Gamma ) \cdot (\begin{array}{*{20}{c}} s \\ p \\ X \end{array}) = T(\begin{array}{*{20}{c}} s \\ p \\ X \end{array}) = 0 $$
(3.1)

where T is the total stoichiometric matrix. Equation (3.1) is formally the same as Eq. (2.20), expressing the stoichiometry of J reactions, but the extracellular substrates and products appear in place of their intracellular representatives. Matrices A and B have the same dimension as in Eq. (2.20), but otherwise they are different from the corresponding matrices of Eq. (2.20), and the internal composition vector may also be different from that considered in Eq. (2.20)—some of the S i or P i in the general formulation may for example be included in X in the condensed stoichiometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, G. P. (1990). “Glycerol,” Adv. Biochem. Eng. Biotechnol. 41, 95–128.

    CAS  Google Scholar 

  • Aiba, S. and Matsuoka, M. (1979). “Identification of metabolic model: Citrate production from glucose by Candida lipolytica, ” Biotechnol. Bioeng. 21, 1373–1386.

    Article  CAS  Google Scholar 

  • Aris, R. and Mah, R. H. S. (1963). “Independence of chemical reactions,” Industrial and Engineering Chemistry Fundamentals 2, 90–94.

    Article  CAS  Google Scholar 

  • Bailey, J. E. (1991). “Toward a science of metabolic engineering,” Science 252, 1668–1675.

    Article  PubMed  CAS  Google Scholar 

  • Benthin, S. (1992). Growth and product formation of Lactococcus cremoris, Ph.D. thesis, Technical University of Denmark, Lyngby.

    Google Scholar 

  • Bijkerk, A. H. E. and Hall, R. J. (1977). “A mechanistic model of the aerobic growth of Saccharomyces cerevisiae.” Biotechnol. Bioeng. 19, 267–296.

    Article  CAS  Google Scholar 

  • Cornish-Bowden, A. and Cardenas, M. L. (1990). Control of Metabolic Processes, Plenum Press, New York.

    Google Scholar 

  • Delgado, J. P. and Liao, J. C. (1991). “Identifying rate-controlling enzymes in metabolic pathways without kinetic parameters,” Biotechnol. Prog. 7, 15–20.

    Article  CAS  Google Scholar 

  • Delgado, J. and Liao, J. C. (1992a). “Determination of flux control coefficients using transient metabolite concentrations,” Biochem. J. 282, 919–927.

    PubMed  CAS  Google Scholar 

  • Delgado, J. and Liao, J. C. (1992b). “Metabolic control analysis using transient metabolite concentra- tions. Determination of metabolite concentration control coefficients,” Biochem. J. 285, 965–972.

    PubMed  Google Scholar 

  • Delgado, J., Meruane, J., and Liao, J. C. (1993). “Experimental determination of flux control distribution in biochemical systems: In vitro model to analyze metabolite concentrations,” Biotechnol. Bioeng. 41, 1121–1128.

    Article  PubMed  CAS  Google Scholar 

  • Fell, D. A. (1992). “Metabolic control analysis: A survey of its theoretical and experimental development,” Biochem. J. 286, 313–330.

    PubMed  CAS  Google Scholar 

  • Flint, H. J., Tateson, R. W., Barthelmess, I. B., Porteous, D. J., Donachie, W. D., and Kacser, H. (1981). “Control of the flux in the arginine pathway of Neurospora crassa, ” Biochem. J. 200, 231–246.

    PubMed  CAS  Google Scholar 

  • Heijden, R. T. J. M. van der, Heijnen, J. J., Hellinga, C., Romein, B., and Luyben, K. Ch. A. M. (1994a). “Linear constraint relations in biochemical reaction systems: I, Classification of the calculability and the balanceability of conversion rates,” Biotechnol. Bioeng. 43, 3–10.

    Article  PubMed  Google Scholar 

  • Heijden, R. T. J. M. van der, Romein, B., Heijnen, J. J., Hellinga, C., and Luyben, K. Ch. A. M. (1994b). “Linear constraint relations in biochemical reaction systems: II, Diagnosis and estimation of gross errors,” Biotechnol. Bioeng. 43, 11–20.

    Article  PubMed  Google Scholar 

  • Heinrich, R. and Rapoport, T. A. (1974). “A linear steady-state treatment of enzymatic chains,” Eur. J. Biochem. 42, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Kacser, H. and Burns, J. A. (1973). “The control of flux,” Symp. Soc. Exp. Biol. 27, 65–104.

    PubMed  CAS  Google Scholar 

  • Kell, D. B. and Westerhoff, H. V. (1986). “Metabolic control theory: Its role in microbiology and biotechnology,” FEMS Microbiol. Rev. 39, 305–320.

    Article  CAS  Google Scholar 

  • Kiss, R. D. and Stephanopoulos, G. (1992). “Metabolic characterization of a L-lysine producing strain by continuous culture,” Biotechnol. Bioeng. 39, 565–574.

    Article  PubMed  CAS  Google Scholar 

  • Kok, H. E. and Rods, J. A. (1980). “Method for the statistical treatment of elemental and energy balances with application to steady state continuous culture growth of Saccharomyces cerevisiae CBS426 in the respiratory region,” Biotechnol. Bioeng. 22, 1097–1100.

    Article  Google Scholar 

  • Liao, J. C. and Lightfoot, E. M. (1988). “Characteristic reaction paths of biochemical reaction systems with time scale separation,” Biotechnol. Bioeng. 31, 847–854.

    Article  PubMed  CAS  Google Scholar 

  • Madron, F., Veverka, V., and Vanecek, V. (1977). “Statistical analysis of material balance of a chemical reactor,” A.1.Ch.E. J. 23, 482–486.

    Article  CAS  Google Scholar 

  • Meyenburg, K. von (1969). Katabolit-Repression and der Sprossungszyklus von Saccharomyces cerevisiae, Dissertation, ETH, Zürich.

    Google Scholar 

  • Mor, J. R. and Fiechter, A. (1968). “Continuous cultivation of Saccharomyces cerevisiae: I, Growth on ethanol under steady state conditions,” Biotechnol. Bioeng. 10, 159–176.

    Article  CAS  Google Scholar 

  • Noorman, H. (1991). Methodology on Monitoring and Modelling of Microbial Metabolism, Ph.D. thesis, Technical Unversity of Delft, Delft.

    Google Scholar 

  • Papoutsakis, E. T. (1984). “Equations and calculations for fermentations of butyric acid bacteria,” Biotechnol. Bioeng. 26, 174–187.

    Article  PubMed  CAS  Google Scholar 

  • Reardon, K. F., Scheper, T. H., and Bailey, J. E. (1987). “Metabolic pathway rates and culture fluorescence in batch fermentations of Clostridium acetobutylicum, ” Biotechnol. Prog. 3, 153–167.

    Article  CAS  Google Scholar 

  • Roels, J. A. (1983). Energetics and Kinetics in Biotechnology, Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  • Savageau, M. A. (1976). Biochemical Systems Analysis, Addison-Wesley, London.

    Google Scholar 

  • Small, J. R. and Kacser, H. (1993). “Response of metabolic systems to large changes in enzyme activities and effectors,” Eur. J. Biochem. 213, 613–640.

    Article  PubMed  CAS  Google Scholar 

  • Stephanopoulos, G. and Vallino, J. J. (1991). “Network rigidity and metabolic engineering in metabolite overproduction,” Science 252, 1675–1681.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, S. P. and Lee, Y. H. (1988). “Application of metabolic pathway stoichiometry to statistical analysis of bioreactor measurement data,” Biotechnol. Bioeng. 32, 713–715.

    Article  PubMed  CAS  Google Scholar 

  • Verduyn, C., Stouthamer, A. H., Scheffers, W. A., and van Dijken, J. P. (1991). “A theoretical evaluation of growth yields on yeasts,” Antonie van Leeuwenhoek 59, 49–63.

    Article  PubMed  CAS  Google Scholar 

  • Wang, N. S. and Stephanopoulos, G. (1983). “Application of macroscopic balances to the identification of gross measurement errors,” Biotechnol. Bioeng. 25, 2177–2208.

    Article  PubMed  CAS  Google Scholar 

  • Wei, J. and Prater, C. D. (1962). The structure and Analysis of Complex Reaction Systems, Advances in Catalysis 13, Academic Press, New York, 203–392.

    Google Scholar 

  • Westerhoff, H. V. and Chen, Y.-D. (1984). “How do enzyme activities control metabolite concentrations. An additional theorem in the theory of metabolic control,” Eur. J. Biochem. 142, 425–430.

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff, H. V. and Kell, D. B. (1987). “Matrix method for determining steps most rate-limiting to metabolic fluxes in biotechnological processes,” Biotechnol. Bioeng. 30, 101–107.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nielsen, J., Villadsen, J. (1994). Analysis of Reaction Rates. In: Bioreaction Engineering Principles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4645-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4645-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4647-1

  • Online ISBN: 978-1-4757-4645-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics