Skip to main content

Morphologically Structured Models

  • Chapter
Bioreaction Engineering Principles

Abstract

In Chapters 2 and 4, we specified the stoichiometry and kinetics for the metabolism of individual cells, and it was assumed that all the cells in a culture have the same metabolism; i.e., the cell population was assumed to be completely homogeneous. This assumption is reasonable for most unicellular bacterial cultures (see also the discussion in Chapter 6), but for yeasts and filamentous microorganisms cellular segregation in the culture may have a serious impact on the overall performance of the culture. Thus in yeast cultures there is a difference in the cellular metabolism of mother and daughter cells (see Section 5.2), and in filamentous microorganisms there is a significant variation in the metabolism of the individual cells in the multicellular structures that make up the filaments (see Section 5.3). To describe these cultures correctly it is necessary to consider a morphological variation of the individual cells. Therefore a metabolic model for each individual morphological form is combined with a model for the population of morphological forms, i.e., a morphologically structured model. The theoretical concepts governing the interactions among different morphological forms of the same strain of a given microorganism can also be used to determine the behavior of so-called mixed populations. A mixed cell population could consist of the wild-type strain and several genetically engineered variants of the microorganism, but heterogeneous cultures of very different microorganisms are also included in the discussion of mixed populations in Section 5.4. In the first section of the chapter, a framework for morphologically structured models will be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, J. E. and Ollis, D. F. (1986). Biochemical Engineering Fundamentals, 2d. ed., McGraw-Hill, New York.

    Google Scholar 

  • Bartnicki-Garcia, S. (1973). “Fundamental aspects of hyphal morphogenesis,” Svmp. Soc. Gen. Microbiol. 23, 245–267.

    Google Scholar 

  • Bartnicki-Garcia, S. (1990). “Role of vesicles in apical growth and a new mathematical model of hypha morphogenesis,” In Tip Growth in Plant and Fungal Cells, I.B. Heath ed., Academic Press, San Diego.

    Google Scholar 

  • Caldwell, I. Y. and Trinci, A. P. J. (1973). “The growth unit of the mould Geotrichum candidum, ” Arch. Mikrobiol. 88,1–10.

    Article  PubMed  CAS  Google Scholar 

  • Cazzador, L. (1991). “Analysis of oscillations in yeast continuous cultures by a new simplified model,” Bull. Math. Biol. 5, 685–700.

    Google Scholar 

  • Cazzador, L. and Mariani, L. (1988). “A simulation program based on a structured population model for biotechnological yeast processes,” Appl. Microbiol. Biotechnol. 29, 198–202.

    Article  CAS  Google Scholar 

  • Cazzador, L. and Mariani, L. (1990). “A two compartment model for the analysis cf spontaneous oscillations in s. cerevisiae, ” Abstract book (European Congress on Biotechnology, Copenhagen) 5, 342.

    Google Scholar 

  • Cazzador, L., Mariani, L., Martegani, E., and Alberghina, L. (1990). “Structured segregated models and analysis of self-oscillating yeast continuous culture,” Bioproc. Eng. 5, 175–180.

    Article  CAS  Google Scholar 

  • Fiddy, C. and Trinci, A. P. J. (1976). “Mitosis, septation, branching and the duplication cycle in Asper-gillus nidulans, ” J. Gen. Microbiol. 97, 169–184.

    PubMed  CAS  Google Scholar 

  • Frandsen, S. (1993). Dynamics of Saccharomyces Cerevisiae in Continuous culture, Ph.D. thesis, Technical University of Denmark, Lyngby.

    Google Scholar 

  • Hjortso, M. A. and Nielsen, J. (1994). “A conceptual model of autonomous oscillations in microbial cultures,” Chem. Eng. Sci. 49, 1083–1095.

    Article  CAS  Google Scholar 

  • Martegani, E., Porro, D., Ranzi, B. M. and Alberghina, L. (1990). “Involvement of a cell size control mechanism in the induction and maintenance of oscillations in continuous cultures of budding yeast,” Biotechnol. Bioneg. 36, 453–459.

    Article  CAS  Google Scholar 

  • Matsumura, M., Imanaka, T., Yoshida, T., and Tagushi, H. (1981). “Modelling of Cephalosporin C production and application to fed-batch culture,” J. Ferment. Technol. 59, 115–123.

    CAS  Google Scholar 

  • Megee, R. D., Kinishita, S., Fredrickson, A. G., and Tsuchiya, H. M. (1970). “Differentiation and product formation in molds,” Biotechnol. Bioeng. 12, 771–801.

    Article  PubMed  CAS  Google Scholar 

  • Metz, B. and Kossen, N. W. F. (1977). “The growth of molds in the form of pellets-a literature review,” Biotechnol. Bioeng. 19, 781–799.

    Article  CAS  Google Scholar 

  • Munch, T. (1992). Zellzyklusdynamik von Saccharomyces Cerevisiae in Bioprozessen, Ph.D. thesis, ETH, Zürich.

    Google Scholar 

  • Nestaas, E. and Wang, D. I. C. (1983). “Computer control of the penicillin fermentation using the filtration probe in conjugation with a structured process model,” Biotechnol. Bioeng. 25,781–796.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, J. (1992). “Modelling the growth of filamentous fungi,” Adv. Biochem. Eng. Biotechnol. 46, 187–223.

    PubMed  CAS  Google Scholar 

  • Nielsen, J. (1993). “A simple morphologically structured model describing the growth of filamentous microorganisms,” Biotechnol. Bioeng. 41, 715–727.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, J. and Villadsen, J. (1992). “Modelling of microbial kinetics,” Chem. Eng. Sci. 47, 4225–4270.

    Article  CAS  Google Scholar 

  • Packer, H. L., Keshavarz-Moore, E., Lilly, M. D., and Thomas. C. R. (1992). “Estimation of cell volume and biomass of Penicillium chrysogenum using image analysis,” Biotechnol. Bioeng. 39, 384–391.

    Article  PubMed  CAS  Google Scholar 

  • Porro, D., Martegani, E., Ranzi, B. M., and Alberghina, L. (1988). “Oscillations in continuous cultures of budding yeast: A segregated parameter analysis,” Biotechnol. Bioeng. 32, 411–417.

    Article  PubMed  CAS  Google Scholar 

  • Prosser, J. I. and Tough, A. J. (1991). “Growth mechanisms and growth kinetics of filamentous micro-organisms,” Crit. Rev. Biotechnol. 10, 253–274.

    Article  PubMed  CAS  Google Scholar 

  • Riesenberg, D. and Bergter, F. (1979). “Dependence of macromolecular composition and morphology of Streptomyces hygroscopicus on specific growth rate,” Z. Allgemeine Mikrobiol. 19, 415–430.

    Article  CAS  Google Scholar 

  • Robinson, P. M. and Smith, J. M. (1979). “Development of cells and hyphae of Geotrichum candidum in chemostat and batch culture,” Proc. Br. Mycol. Soc. 72, 39–47.

    Article  Google Scholar 

  • Sonnleitner, B. and Käppeli, O. (1986). “Growth of Saccharomyces Cerevisiae is controlled by its limited respiratory capacity: Formulation and verification of a hypothesis,” Biotechnol. Bioeng. 28, 927–937.

    Article  PubMed  CAS  Google Scholar 

  • Strässle, C., Sonnleitner, B., and Fiechter, A. (1988). “A predictive model for the spontaneous synchronization of Saccharomyces Cerevisiae grown in continuous culture I. Concept,” J. Biotechnol. 7, 299–318.

    Article  Google Scholar 

  • Strässle, C., Sonnleitner, B., and Fiechter, A. (1989). “A predictive model for the spontaneous synchronization of Saccharomyces Cerevisiae grown in continuous culture II. Experimental verification,” J. Biotechnol. 9, 191–208.

    Article  Google Scholar 

  • Trinci, A. P. J. (1974). “A study of the kinetics of hyphal extension and branch initiation of fungal mycelia,” J. Gen. Microbiol. 81, 225–236.

    PubMed  CAS  Google Scholar 

  • Trinci, A. P. J. (1984). “Regulation of hyphal branching and hyphal orientation,” in The Ecology and Physiology of the Fungal Mycelium, D. H. Jennings and A. D. M. Rayner, eds., Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Yang, H., King, R., Reichl, U., and Gilles, E. D. (1992a). “Measurement and simulation of the morpho-logical development of filamentous microorganisms,” Biotechnol. Bioeng. 39, 44–48.

    Article  PubMed  CAS  Google Scholar 

  • Yang, H., King, R., Reichl, U., and Gilles, E. D. (1992b). “Mathematical model for apical growth, septation, and branching of mycelial microorganisms,” Biotechnol. Bioeng. 39, 49–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nielsen, J., Villadsen, J. (1994). Morphologically Structured Models. In: Bioreaction Engineering Principles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4645-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4645-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4647-1

  • Online ISBN: 978-1-4757-4645-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics