Skip to main content

Abstract

In many bioreactions, the transport of nutrients to the cell surface and the removal of metabolites from the cell surface to the bulk of the medium are rate processes with time constants not much smaller than those of the cellular reactions. Therefore mass transfer must be included in an analysis of bioreactions alongside of stoichiometry and cellular kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aris, R. (1975). The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts. Volume 1. The Theory of the Steady State, Clarendon Press, Oxford.

    Google Scholar 

  • Bailey, J. E. and Ollis, D. F. (1986). Biochemical Engineering Fundamentals, 2nd ed., McGraw-Hill, New York.

    Google Scholar 

  • Bhavaraju, S. M., Russell, T. W. F., and Blanch, H. W. (1978). “The design of gas sparged devices for viscous liquid systems,” AIChE. J. 24 454–465.

    Google Scholar 

  • Bird, R. B., Stewart, W. E., and Lightfoot, E. N. (1960). Transport Phenomena, John Wiley and Sons, Singapore.

    Google Scholar 

  • Christensen, L. H. (1992). Modelling of the Penicillin Fermentation, Ph.D. thesis, Technical University of Denmark, Lyngby.

    Google Scholar 

  • Craig, V. S. J., Ninham, B. W., and Pashley, R. M. (1993). “Effect of electrolytes on bubble coalescence,” Nature 364, 317–319.

    Google Scholar 

  • Danckwerts, P. V. (1970). Gas-Liquid Reactions, McGraw-Hill, New York.

    Google Scholar 

  • Keitel, G. and Onken, U. (1982). “The effect of solutes on bubble size in air-water dispersions,” Chem. Eng. Commun. 17 85–98.

    Google Scholar 

  • Lee, Y. H. and Meyrick, D. L. (1970). “Gas-liquid interfacial areas in salt solutions in an agitated tank,” Trans. Inst. Chem. Eng. 48 T37–T45.

    Google Scholar 

  • Lehrer, I. H. (1971). “Gas hold-up and interfacial area in sparged vessels,” Ind. Eng. Chem. Des. Dev. 10 37–40.

    Google Scholar 

  • Levenspiel, O. (1972). Chemical Reaction Engineering, 2nd ed., John Wiley and Sons, Singapore.

    Google Scholar 

  • Linek, V. and Vacek, V. (1981). “Chemical engineering use of catalyzed sulphite oxidation kinetics for the determination of mass transfer characteristics of gas-liquid contactors”, Chem. Eng. Sci. 36, 1747–1768.

    Article  CAS  Google Scholar 

  • Linek, V., Vacek, V., and Benes, P. (1987). ‘A critical review and experimental verification of the correct use of the dynamic method for the determination of oxygen transfer in aerated agitated vessels to water, electrolyte solutions and viscous liquids, “ Chem. Eng. J. 34, 11–34.

    Article  CAS  Google Scholar 

  • Moo-Young, M. and Blanch, H. W. (1981). “Design of biochemical reactors. Mass transfer criteria for simple and complex systems,” Adv. Biochem. Eng. 19 1–69.

    Google Scholar 

  • Pedersen, A. G. (1992). Characterization and Modelling of Bioreactors, Ph.D. thesis, Technical University of Denmark, Lyngby.

    Google Scholar 

  • Pedersen, A. G., Andersen, H., Nielsen, J., and Villadsen, J. (1994). “A novel technique based on 85 Kr for quantification of gas-liquid mass transfer in bioreactors,“ Chem. Eng. Sci. 49 803–810.

    Google Scholar 

  • Popovic, M., Niebelschütz, H., and Reuss, M. (1979). “Oxygen solubilities in fermentation fluids,” Eur. J. Appl. Microb. Biotechnol. 8, 1–15.

    Google Scholar 

  • van’t Riet, K. (1979). “Review of measuring methods and results in non-viscous gas-liquid mass transfer in stirred vessels,” Ind. Eng. Chem. Process Dev. 18 357–364.

    Google Scholar 

  • Schügerl, K. (1981). “Oxygen transfer into highly viscous media,” Adv. Biochem. Eng. 19 71–174.

    Google Scholar 

  • Villadsen, J. and Michelsen, M. L. (1978). Solution of Differential Equation Models by Polynomial Approximation, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Whitman, W. G. (1923). “A preliminary experimental confirmation of the two-film theory of gas absorption,” Chem. Metal. Eng. 29 146–148.

    Google Scholar 

  • Wittier, R., Baumgartl, H., Lübbers, D. W., and Schügerl, K. (1986). “Investigation of oxygen transfer into Pencillium chrysogenum pellets by microprobe measurements,” Biotechnol. Bioeng. 28 1024–1036.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nielsen, J., Villadsen, J. (1994). Mass Transfer. In: Bioreaction Engineering Principles. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-4645-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4645-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-4647-1

  • Online ISBN: 978-1-4757-4645-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics