Skip to main content

Acoustic Radiation Pressure

  • Chapter
High-Intensity Ultrasonic Fields

Part of the book series: Ultrasonic Technology ((ULTE))

Abstract

The acoustic radiation pressure is customarily interpreted as the time-average pressure acting on an object in a sound field. The object in this case is conceived in the broadest sense, i.e., a body in a sound field, an interface between two media, or a single particle of a medium set against the other particles of the same medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rayleigh (J. W. Strutt), The Theory of Sound, Vol. 2, New York (1965).

    Google Scholar 

  2. Lord Rayleigh, On the momentum and pressure of gaseous vibrations, and on the connection with the virial theorem, Phil. Mag., 10: 364 (1905);

    MATH  Google Scholar 

  3. Lord Rayleigh, On the momentum and pressure of gaseous vibrations, and on the connection with the virial theorem, Phil. Mag., 3: 336 (1902).

    Google Scholar 

  4. V. Al’tberg, On the pressure of sound waves and on the absolute measurement of sound intensity, Zh. Russk. Fiz.-Khim. Obshch., Chast’, Fiz., 34 (4): 459 (1903);

    Google Scholar 

  5. V. Al’tberg, On the pressure of sound waves and on the absolute measurement of sound intensity, Ann. Phys., 11: 405 (1903).

    Article  Google Scholar 

  6. V. D. Zernov, Comparison of methods for the absolute measurement of sound intensity, Zh. Russk. Fiz.-Khim. Obshch., Chast’ Fiz., 38 (7): 410 (1906);

    Google Scholar 

  7. V. D. Zernov, Comparison of methods for the absolute measurement of sound intensity, Ann. Phys., 21: 131 (1906).

    Article  Google Scholar 

  8. R. Lucas, La pression de radiation en physique et particulierement en acoustique [Radiation pressure in physics and in particular in acoustics], Fifth Internat. Congr. Acoustics, Liège, Vol. 2, p. 163 (1965).

    Google Scholar 

  9. W. E. Smith, Radiation pressure forces in terms of impedance, admittance, and scattering matrices, J. Acoust. Soc. Am., 37 (5): 932 (1965).

    Article  Google Scholar 

  10. A. S. Denisov, D. B. Dianov, A. A. Podol’skii, and V. I. Turubarov, Drift of an aerosol particle in a sound wave distorted by the presence of the second harmonic, Akust. Zh., 12 (1): 31 (1966).

    Google Scholar 

  11. L. Bergmann, Ultraschall und seine Anwendung in Wissenschaft und Technik, Edwards, Ann Arbor, Michigan.

    Google Scholar 

  12. E. P. Mednikov, Acoustic Coagulation and Precipitation of Aerosols, Izd. AN SSSR (1963).

    Google Scholar 

  13. G. Hertz and H. Mende, Der Schallstrahlungsdruck in FlĂĽssigkeiten [Acoustic radiation pressure in fluids], Z. Phys., 114: 354 (1939).

    Article  Google Scholar 

  14. E. Skudzryk, Die Grundlagen der Akustik [Fundamentals of Acoustics], Vienna (1954).

    Google Scholar 

  15. I. Matauschek, Einfuhrung in die Ultraschalltechnik [Introduction to Ultrasonic Engineering], Berlin (1961).

    Google Scholar 

  16. L. D. Rozenberg, V. F. Kazantsev, L. O. Makarov, and D. F. Yakhimovich, Ultrasonic Cutting, Izd. AN SSSR (1962).

    Google Scholar 

  17. L. K. Zarembo and V. A. Krasil’nikov, Introduction to Nonlinear Acoustics ( High-Intensity Sonic and Ultrasonic Waves ), Izd. “Nauka” (1966).

    Google Scholar 

  18. L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media, Moscow (1954).

    Google Scholar 

  19. Z. Gol’dberg, Second-approximation acoustic equations and the propagation of finite-amplitude plane waves, Akust. Zh., 2 (3): 325 (1956).

    Google Scholar 

  20. D. T. Blackstock, Thermoviscous attenuation of plane, periodic, finite-amplitude sound waves, J. Acoust. Soc. Am., 36 (3): 534 (1964).

    Article  Google Scholar 

  21. L. Brillouin, Sur les tensions de radiation [On the radiation pressure forces], Ann. Phys., 4 (10): 528 (1925).

    MATH  Google Scholar 

  22. L. Brillouin, Les pressions de radiation et leur aspect tensorial [Radiation pressures and their tensorial aspect], J. Phys. Radium, 17 (5): 379 (1956).

    Article  MathSciNet  Google Scholar 

  23. F. E. Borgnis, Acoustic radiation pressure of plane compressional waves, Rev. Mod. Phys., 25 (3): 653 (1953).

    Article  MATH  Google Scholar 

  24. F. E. Borgnis, Ăśber die Bewegungsgleichung und den Impulssatz in viskosen und kompressiblen Medien [Equation of motion and momentum principle in viscous and compressible media], Acustica, 4 (4): 407 (1954).

    MathSciNet  Google Scholar 

  25. O.K. Mawardi, Sur la pression de radiation en acoustique [On the acoustic radiation pressure], J. Phys. Radium, 17 (5): 384 (1956).

    Article  MathSciNet  Google Scholar 

  26. J. Mercier, De la pression de radiation dans les fluides [Radiation pressure in fluids], J. Phys. Radium, 17 (5): 401 (1956).

    Article  Google Scholar 

  27. C. Schaefer, Zur Theorie des Schallstrahlungsdruckes [On the theory of the acoustic radiation pressure], Ann. Phys. (5), 35 (6): 473 (1939).

    Article  MATH  Google Scholar 

  28. F. Bopp, Energetische Betrachtungen zum Schallstrahlungsdruck [Energy analysis of the acoustic radiation pressure], Ann. Phys., (5), 38: 495 (1940).

    Article  MathSciNet  Google Scholar 

  29. R. T. Beyer, Radiation pressure in a sound wave, Am. J. Phys., 18(1):25(1950).

    Google Scholar 

  30. G. Richter, Zur Frage der Schallstrahlungsdruckes [On the acoustic radiation pressure], Z. Phys., 115: 97 (1940).

    Article  Google Scholar 

  31. E. Karaskiewicz, Radiation pressure of an acoustical plane wave, Bull. Soc. Amis Sci. Lettres de Poznan Ser. B, 14: 73 (1958);

    Google Scholar 

  32. E. Karaskiewicz, Radiation pressure of an acoustical plane wave, Postepy Akustyki, 8 (1): 79 (1957).

    Google Scholar 

  33. P. Biquard, Les ondes ultras-sonores (II) [Ultrasonic waves (II)], Rev. Acoust., 1: 315 (1932).

    Google Scholar 

  34. P. Biquard, Les ondes ultras-sonores (II), [Ultrasonic Waves (II)] Rev. Acoust., 1: 315 (1932).

    Google Scholar 

  35. F. E. Borgnis, Acoustic radiation pressure of plane-compressional waves at oblique incidence, J. Acoust. Soc. Am., 24 (5): 468 (1952).

    Article  Google Scholar 

  36. F. E. Borgnis, On the forces due to acoustic wave motion in a viscous medium and their use in the measurement of acoustic intensity, J. Acoust. Soc. Am., 25 (3): 546 (1953).

    Article  Google Scholar 

  37. A. A. Éikhenval’d, Large-amplitude sound waves, Usp. Fiz. Nauk, 14 (5): 552 (1934).

    Google Scholar 

  38. P. J. Westervelt, The mean pressure and velocity in a plane acoustic wave in a gas, J. Acoust. Soc. Am., 22 (3): 319 (1950).

    Article  MathSciNet  Google Scholar 

  39. R. Lucas, Les tensions de radiation en acoustique [Acoustic radiation pressure forces], J. Phys. Radium, 17 (5): 395–399 (1956).

    Article  MathSciNet  Google Scholar 

  40. D. T. Blackstock, Normal reflection of finite amplitude plane waves from a rigid wall, Proc. Third Internat. Congr. Acoustics, Stuttgart, Vol. 1, p. 309 (1959).

    Google Scholar 

  41. J. Mendousse, Acoustic radiation pressure, Compt. Rend., 208: 1977 (1938).

    Google Scholar 

  42. M. Mathiot, Étude experimentale du terme isotrope de la tension de radiation acoustique dans un gaz [Experimental study of the isotropic term in the acoustic radiation pressure in a gas], Compt. Rend., 255 (1): 64 (1962).

    Google Scholar 

  43. M. Mathiot, Étude experimentale du terme isotrope de la tension de radiation acoustique dans un gaz [Experimental study of the isotropic term in the acoustic radiation pressure in a gas], Ann. Phys., 1: 235 (1966).

    Google Scholar 

  44. R. V. Dombrovskii, Report to the Colloquium at the Acoustics Institute of the Academy of Sciences of the USSR (1966).

    Google Scholar 

  45. C. Florisson, Procédé d’étalonnage d’une sonde acoustique au moyen du pendule absolu de pression de radiation [Procedure for the absolute calibration of an acoustic probe by means of a pendulum from the radiation pressure], J. Phys. Radium, 17: 411 (1956).

    Article  Google Scholar 

  46. W. G. Cady and C. E. Gittings, On the measurement of power radiated from an acoustic source, J. Acoust. Soc. Am., 25 (5): 892 (1953).

    Article  Google Scholar 

  47. E. M. J. Herrey, Experimental studies on acoustic radiation pressure, J. Acoust. Soc. Am., 2’7(5): 891 (1955).

    Google Scholar 

  48. V. Gavreau, Pression de radiation sonore d’apres la théorie cinétique des gaz [Acoustic radiation pressure in terms of the kinetic theory of gases], J. Phys. Radium, 17 (10): 899 (1956).

    Article  Google Scholar 

  49. E. J. Post, Radiation pressure and dispersion, J. Acoust. Soc. Am., 25 (1): 55 (1953).

    MathSciNet  Google Scholar 

  50. J. S. Mendousse, On the theory of acoustic radiation pressure, Proc. Am. Acad. Arts and Sci., 78: 148 (1950).

    Article  MathSciNet  Google Scholar 

  51. Z. A. Gol’dberg and K. A. Naugol’nykh, The Rayleigh sound pressure, Akust. Zh., 9 (1): 28 (1963).

    Google Scholar 

  52. R. Lucas, Sur les tensions de radiation des ondes acoustices [Radiation pressure forces of sound waves], Nuovo Cimento (9), 7 (2): 236 (1950).

    Google Scholar 

  53. R. Lucas, Sur les pressions des radiation des ondes spheriques [Radiation pressure of spherical waves], Compt. Rend., 230: 2004 (1950).

    Google Scholar 

  54. M. J. Seegal, Acoustic radiation pressure bearing, J. Acoust. Soc. Am., 33 (5): 566 (1961).

    Article  Google Scholar 

  55. E. Fubini-Chiron, Anomalie nella propagazione di onde acustiche di grande ampiezza [Anomalies in the propagation of large-amplitude sound waves], Alta Frequenza, 4 (5): 530 (1935).

    Google Scholar 

  56. N. N. Andreev, Ober die Energieausdrucke in der Akustik [Energy expressions in acoustics], J. Phys. (USSR), 2: 305 (1940).

    Google Scholar 

  57. A. Schoch, Zur Frage nach dem Impuls einer Schallwelle [On the momentum of sound wave], Z. Naturforsch., 7a:2’73 (1952).

    Google Scholar 

  58. J. Markham, Second order acoustic field; relation between energy and intensity, Phys. Rev., 89: 972 (1953).

    Article  MATH  Google Scholar 

  59. N. N. Andreev, Certain second-order quantities in acoustics, Akust. Zh., 1 (1): 3 (1955).

    Google Scholar 

  60. N. N. Andreev, Einige Fragen der nichtlinearen Akustik [Some problems in nonlinear acoustics], Proc. Third Internat. Congr. Acoustics, Stuttgart (1959), Vol. 1, p. 304 (1961).

    Google Scholar 

  61. J. Fazanowicz, Ped i energia ciagu falowego, Postepy Akustyki, 8 (1): 181 (1957).

    Google Scholar 

  62. J. Markham, Second order acoustic field; energy relations, Phys. Rev., 86 (5): 712 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  63. A. Schoch, Remarks on the concept of acoustic energy, Acustica, 3 (3): 181 (1953).

    Google Scholar 

  64. Z. Gol’dberg, On momentum flux in sound waves, Preprints Fifth Internat. Congr. Acoust., Liège, Vol. K44 (1965).

    Google Scholar 

  65. L. D. Rozenberg and L. O. Makarov, Causes of the swelling of the surface of a liquid under the influence of ultrasound, Dokl. Akad. Nauk SSSR, 114 (2): 275 (1957).

    Google Scholar 

  66. A. N. Golenkov and I. G. Rusakov, Optimum Rayleigh disks for the measurement of sound intensity in water, Trudy Inst. Komiteta Standartov, Mer i Izmeritel’nykh Priborov pri Sovete Ministrov SSSR, No. 45 (105), p. 63 (1960).

    Google Scholar 

  67. J. A. Newell, A radiation pressure balance for the absolute measurement of ultrasonic power, Phys. Med. Biol., 8 (2): 215 (1963).

    Article  MathSciNet  Google Scholar 

  68. J. Cabrielli and G. Jenretti, Torsion balance for radiation pressure measurements, Acustica, 13 (3): 175 (1963).

    Google Scholar 

  69. A. T. Kosolapov, Application of King’s formula for measurement of ultrasonic intensity, Uch. Zap. Mordovsk. Univ., Ser. Fiz. Nauk (Saransk), No. 36, p. 112 (1964).

    Google Scholar 

  70. G. Kossoff, Balance technique for the measurement of very low ultrasonic power outputs, J. Acoust. Soc. Am., 38 (8): 880 (1965).

    Article  Google Scholar 

  71. O. E. Tsok, Balance for the measurement of ultrasonic intensity, Izmeritel’, Tekh., 7: 42 (1965).

    Google Scholar 

  72. W. Dörr, Anziehende und abstossende Kräfte zwischen Kugeln im Schallfeld [Attractive and repulsive forces between spheres in a sound field], Acustica, 5 (3): 163 (1955).

    Google Scholar 

  73. V. F. Kazantsev, Motion of gas bubbles in a liquid under the action of Bjerknes forces arising in a sound field, Dokl. Akad. Nauk SSSR, 129 (1): 64 (1959).

    Google Scholar 

  74. T. F. W. Embleton, Mutual interaction between two spheres in a plane sound field, J. Acoust, Soc. Am., 34 (11): 1714 (1962).

    Article  MathSciNet  Google Scholar 

  75. V. I. Timoshenko, Aggregation of aerosol particles in a sound field under the conditions of Stokes law flow, Akust. Zh., 11 (2): 222 (1965).

    Google Scholar 

  76. N. L. Shirokova and O. K. Eknadiosyants, Interaction of aerosol particles in an acoustic field, Akust. Zh., 11 (3): 409 (1965).

    Google Scholar 

  77. N. A. Fuks, Mechanics of Aerosols, Izd. AN SSSR (1955).

    Google Scholar 

  78. L. V. King, On the acoustic radiation pressure on spheres, Proc. Roy. Soc., A147 (861): 212 (1934).

    Article  Google Scholar 

  79. L. V. King, On the acoustic radiation pressure on circular discs; inertia and diffraction corrections, Proc. Roy. Soc., A153 (878) (1935).

    Google Scholar 

  80. P. J. Westervelt, The theory of steady forces caused by sound waves, J. Acoust. Soc. Am., 23 (3): 312 (1951).

    Article  MathSciNet  Google Scholar 

  81. J. Awatani, Studies on acoustic radiation pressure: I. General considerations, J. Acoust. Soc. Am., 27 (2): 278 (1955).

    Article  MathSciNet  Google Scholar 

  82. J. Awatani, Note on acoustic radiation pressure, J. Acoust. Soc. Am., 29 (3): 392 (1957).

    Article  Google Scholar 

  83. A. Johansen, Force agissant sur une sphere suspendue dans un champ sonore [Force acting on a sphere suspended in a sound field], J. Phys. Radium, 17 (5): 400 (1956).

    Article  MathSciNet  Google Scholar 

  84. H. Olsen, H. Wergeland, and P. J. Westervelt, Acoustic radiation force, J. Acoust. Soc. Am., 30 (7): 633 (1958).

    Article  MathSciNet  Google Scholar 

  85. L.P. Gor’kov, Forces acting on a small particle in a sound field in an ideal fluid, Dokl. Akad. Nauk SSSR, 140 (1): 88 (1961).

    Google Scholar 

  86. W. E. Smith, Average radiation-pressure forces produced by sound fields, Australian J. Phys., 17 (3): 389 (1964).

    Article  Google Scholar 

  87. P. J. Westervelt, Acoustic radiation pressure, J. Acoust. Soc. Am., 29 (1): 26 (1957).

    Article  Google Scholar 

  88. T. F. W. Embleton, Mean force on a sphere in a spherical sound field, J. Acoust. Soc. Am., 26 (1): 40 (1954).

    Article  MathSciNet  Google Scholar 

  89. T. F. W. Embleton, The radiation force on a spherical obstacle in a cylindrical sound field, Can. J. Phys., 34 (3): 276 (1956).

    MathSciNet  MATH  Google Scholar 

  90. A. S. Denisov, A. A. Podol’skii, and V. I. Turubarov, Entrainment of aerosol particles in an acoustic field at Reynolds numbers R I, Akust. Zh., 11 (1): 115 (1965).

    Google Scholar 

  91. A. A. Podol’skii and V. I. Turubarov, Dependence of the degree of slip past aerosol particles on the amplitude of the sound field at Reynolds numbers 0.5 R:5.1, Trudy LIAR, No. 45, p. 60 (1965).

    Google Scholar 

  92. A. A. Podol’skii and V. I. Turubarov, Drift of aerosol particles in a sound field under asymmetric distortion of the acoustic waveform, Kolloidn. Zh., 27 (3): 425 (1965).

    Google Scholar 

  93. I. N. Kanevskii, Steady forces arising in a sound field, Akust. Zh., 7 (1): 3 (1961).

    MathSciNet  Google Scholar 

  94. K. Yosioka and Y. Kawasima, Acoustic radiation pressure on a compressible sphere, Acustica, 5 (3): 167 (1955).

    Google Scholar 

  95. K. Yosioka, Y. Kawasima, and H. Hirano, Acoustic radiation pressure on bubbles and their logarithmic decrement, Acustica, 5 (3): 173 (1955).

    Google Scholar 

  96. H. Olsen, W. Romberg, and H. Wegeland, Radiation force on bodies in a sound field, J. Acoust. Soc. Am., 30 (1): 69 (1958).

    Article  Google Scholar 

  97. J. Awatani, Studies on acoustic radiation pressure: II. Radiation pressure on a circular disk, J. Acoust. Soc. Am., 27 (2): 282 (1955).

    Article  MathSciNet  Google Scholar 

  98. H. H. Jensen and K. Saermark, On the theory of the Rayleigh disk and the sound pressure radiometer, Acustica, 8 (2): 79 (1958).

    Google Scholar 

  99. K. Budal, E. Hoy, and H. Olsen, Measurements of acoustic radiation force, J. Acoust. Soc. Am., 31 (11): 1536 (1959).

    Article  Google Scholar 

  100. Lord Rayleigh, On an instrument capable of measuring the intensity of aerial vibrations, Phil. Mag., 14: 186 (1882).

    Google Scholar 

  101. J. Hartmann and T. Mortensen, A comparison of the Rayleigh disk and the acoustic radiometer methods for the measurement of sound-wave energy, Phil. Mag., 39 (292): 377 (1948).

    Google Scholar 

  102. W. West, The accuracy of measurements by Rayleigh disk, Proc. Phys. Soc., B62 (355): 437 (1949).

    Google Scholar 

  103. A. Kösters, Über Schallschnellemessungen in Flüssigkeiten mit der Rayleightschen Scheibe [Sound velocity measurements in fluids with the Rayleigh disk], Akust. Beih., 3:AB171 (1952).

    Google Scholar 

  104. W. König, Hydrodynamisch-akustische Untersuchungen [Hydrodynamic-acoustical investigations] (III), Ann. Phys., 43: 43 (1891).

    Article  Google Scholar 

  105. V. King, On the theory of the inertia and diffraction corrections for the Rayleigh disc, Proc. Roy. Soc., A153: 878 (1935).

    Google Scholar 

  106. A. B. Wood, Theory of the Rayleigh disc, Proc. Phys. Soc., 47 (262): 779 (1935).

    Article  Google Scholar 

  107. J. Awatani, Anomalous behavior of Rayleigh disk for high-frequency waves, J. Acoust. Soc. Am., 28 (2): 297 (1956).

    Article  Google Scholar 

  108. N. Kawai, Sci. Rep. Tohoku Univ., Ser. 1, 35: 210 (1951).

    Google Scholar 

  109. G. Maidanic, Torques due to acoustical radiation pressure, J. Acoust. Soc. Am., 30 (7): 620 (1958).

    Article  Google Scholar 

  110. C. G. Rasmussen, An experimental investigation of the diffraction correction for a Rayleigh disc, Acustica, 14 (3): 148 (1964).

    Google Scholar 

  111. M. Kornfel’d and V. I. Triers, Swelling of the surface of a liquid under the influence of ultrasound, Zh. Tekh. Fix., 26 (12): 2778. (1956).

    Google Scholar 

  112. V. V. Bogorodskii, E. D. Pigulevskii, and V. G. Prokhorov, Method for the Measurement of Ultrasonic Intensity in Liquids, USSR Patent, Class 42d, 1/01, No. 120927 (1959).

    Google Scholar 

  113. K. Negiski and O. Nomoro, Experiment on acoustic radiation pressure, J. Acoust. Soc. Japan, 15 (4): 224 (1959).

    Google Scholar 

  114. I. T. Sokolov, Application of the mathematical theory of King to radiometric measurements of sound pressures in a liquid, Zh. Tekh. Fiz., 15 (4/5): 223 (1945).

    Google Scholar 

  115. G. P. Motulevich, I. L. Fabelinskii, and L. N. Shteingauz, An absolute acoustic microradiometer, DokĂŻ. Akad. Nauk SSSR, 70 (1): 29 (1950).

    Google Scholar 

  116. K. Yosioka, Y. Kawasima, and H. Hirano, On the absolute measurement of ultrasound intensity by radiation force on a solid sphere, Mem. Inst. Sci. and Indust. Res. Osaka Univ., 21: 13 (1964).

    Google Scholar 

  117. A. B. Coppens, R. T. Beyer, M. B. Seiden, J. Donohue, F. Guepin, R. H. Holdson, and C. Townsend, Parameter of nonlinearity in fluids, J. Acoust. Soc. Am., 38 (5): 797 (1965).

    Article  Google Scholar 

  118. J. E. Piercy and J. Lamb, Acoustic streaming in liquids, Proc. Roy. Soc., A226 (1164): 43 (1954).

    Article  MathSciNet  Google Scholar 

  119. D. N. Hall and J. Lamb, Measurement of ultrasonic absorption in liquids by the observations of acoustic streaming, Proc. Phys. Soc., 73 (471): 354 (1959).

    Article  MATH  Google Scholar 

  120. K. P. Nikonov and B. B. Kudryavtsev, Measurement of ultrasonic absorption in a liquid by the streaming method, in: Application of Ultrasonics to the Investigation of Matter, No. 16, Izd. MOPI (1962), p. 183.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gol’dberg, Z.A. (1971). Acoustic Radiation Pressure. In: Rozenberg, L.D. (eds) High-Intensity Ultrasonic Fields. Ultrasonic Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5408-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5408-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5410-0

  • Online ISBN: 978-1-4757-5408-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics