Skip to main content

Part of the book series: Ultrasonic Technology ((ULTE))

Abstract

In the overwhelming majority of studies devoted to various physical aspects of ultrasonic cavitation (see, e.g., Part IV and portions of Part V of the present book), the authors are concerned with the behavior of the individual isolated cavitation bubble. In reality such a bubble is very rarely encountered, its existence being contingent upon a set of conditions that are difficult to realize. As a rule, even at acoustic pressures not too far above the cavitation threshold, an aggregate of cavitation bubbles appears at once, taking up a definite region of space, which we have chosen to call the cavitation zone. Inspite of the foregoing, even in Flynn’s excellent survey [1] and Pernik’s book [2] the bulk of the text refers to the behavior of an individual bubble, with only two or three pages given over to the cavitation zone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. G. Flynn, Physics of Acoustic Cavitation in Liquids, Physical Acoustics (W. P. Mason, ed.), Vol. 1B, Academic Press, New York (1964).

    Google Scholar 

  2. A. D. Pernik, Cavitation Problems, Sudpromgiz (1963).

    Google Scholar 

  3. V. A. Akulichev and L. D. Rozenberg, Certain relations in a cavitation region, Akust Zh., 11 (3): 287 (1965).

    Google Scholar 

  4. M. G. Sirotyuk, Energetics and dynamics of the cavitation zone, Akust. Zh., 13 (2): 265 (1967).

    Google Scholar 

  5. V. A. Akulichev, Experimental investigation of an elementary cavitation zone, Akust. Zh., 14 (3): 337 (1968).

    Google Scholar 

  6. M. G. Sirotyuk, Experimental investigation of the growth of ultrasonic cavitation at 500 kc, Akust. Zh., 8 (2): 216 (1962).

    Google Scholar 

  7. I. P. Golyamina, Ferrite magnetostrictive radiators, Sources of High-Intensity Ultrasound (L. D. Rozenberg, ed), Vol. 1, Plenum Press, New York (1969), pp. 165–222.

    Google Scholar 

  8. L. D. Rozenberg, Einige physikalische Erscheinungen die in hochintensiven Ultraschallfeldern entstehen [Some physical effects in high-intensity ultrasonic fields], Fourth Internat. Congr. Acoustics, Vol. 2, Copenhagen (1962), p. 179.

    Google Scholar 

  9. V. A. Akulichev, L. D. Rozenberg, and M. G. Sirotyuk, Certains relations dans le champ de la cavitation ultra-sonore [Certain relations in the field of ultrasonic cavitation], Proc. Fifth Internat. Congr. Acoustics, E64, Liège (1965).

    Google Scholar 

  10. D. Messino, D. Sette, and F. Wanderlingh, Statistical approach to ultrasonic cavitation, J. Acoust. Soc. Am., 35 (10): 1575 (1963).

    Article  Google Scholar 

  11. M. G. Sirotyuk, Energy balance of an acoustic field in the presence of cavitation, Akust. Zh., 10 (4): 465 (1964).

    Google Scholar 

  12. L. D. Rozenberg, Estimation of the cavitation efficiency of acoustic energy, Akust. Zh., 11 (1): 121 (1965).

    Google Scholar 

  13. L. D. Rozenberg and M. G. Sirotyuk, Apparatus for the generation of focused high-intensity ultrasound, Akust. Zh., 5 (2): 206 (1959).

    Google Scholar 

  14. V. A. Akulichev, Investigation of the Onset and Development of Acoustic Cavitation, Candidate’s Dissertation, Akust. Inst. AN SSSR (1966).

    Google Scholar 

  15. I. G. Mikhailov and V. A. Shutilov, A simple technique for the observation of cavitation in a liquid, Akust. Zh., 5 (3): 376 (1959).

    Google Scholar 

  16. V. A. Akulichev, Yu. Ya. Boguslayskii, A. I. Ioffe, and K. A. Naugol’nykh, Radiation of finite-amplitude spherical waves, Akust. Zh., 13 (3): 321 (1967).

    Google Scholar 

  17. V. P. Korobeinikov, R. S. Mel’nikova, and E. V. Ryazanov, Theory of Point Detonation, Moscow (1961).

    Google Scholar 

  18. Y. Kikuchi and H. Shimizu, On the variation of acoustic radiation resistance in water under ultrasonic cavitation, J. Acoust. Soc. Am., 31 (10): 1385 (1959).

    Article  Google Scholar 

  19. L. D. Rozenberg and M. G. Sirotyuk, On the radiation of sound in the presence of cavitation, Akust. Zh., 6 (4): 478 (1960).

    Google Scholar 

  20. E. V. Romanenko, Ultrasonic receivers and methods for their calibration, Sources of High-Intensity Ultrasound (L. D. Rozenberg, ed), Vol. 2, Plenum Press, New York (1969), p. 187.

    Google Scholar 

  21. M. G. Sirotyuk, Behavior of cavitation bubbles at high ultrasonic intensities, Akust. Zh., 7(4):499 (1961).

    Google Scholar 

  22. A. Sommerfeld, Thermodynamik und Statistik ( Thermodynamics and Statistics ), Wiesbaden (1952).

    MATH  Google Scholar 

  23. A. S. Bebchuk, On the cavitation damage of solids, Akust. Zh., 3 (1): 90 (1957).

    Google Scholar 

  24. Y. Olaf, Oberflachenreinigung mit Ultraschall [Ultrasonic surface cleaning], Acustica, 7 (5): 253 (1957).

    Google Scholar 

  25. A. E. Crawford, The measurement of cavitation, Ultrasonics, 2 (3): 120–123 (1964).

    Article  Google Scholar 

  26. L. D. Rozenberg, On the physics of ultrasonic cleaning, Ultrasonic News, 4 (4): 16 (1960).

    Google Scholar 

  27. A. Weissler, Ultrasonic cavitation measurements by chemicals, Proc. Fourth Internat. Congr. Acoustics, J32 (1962).

    Google Scholar 

  28. Shin Pin Liu, Chlorine release test for cavitation measurements, J. Acoust. Soc. Am., 36 (5): 1019A (1964).

    Google Scholar 

  29. M. Degrois and I. Badilian, Influence du phénomène de relaxation, produit au sein des solutions soumises d’un rayonnement ultrasonore, sur le rendement des effets chimiques et la luminescence [Influence of relaxation phenomena in ultrasonically irradiated solutions on the efficiency of chemical and luminescence effects], Compt. Rend., 254: 231 (1962).

    Google Scholar 

  30. A. S. Bebchuk, Yu. Ya. Borisov, and L. D. Rozenberg, On cavitation erosion, Akust. Zh., 4 (4): 361 (1958).

    Google Scholar 

  31. R. M. Boucher and B. Polansky, The measurement of ultrasonic cavitation, IEEE Symp. Ultrasonics, Los Angeles (1964).

    Google Scholar 

  32. I. A. Roi, Initiation and development of ultrasonic cavitation, Akust. Zh., 3 (1): 3 (1957).

    Google Scholar 

  33. Yu. A. Aleksandrov, G. S. Voronov, V. M. Gorbunkov, N. V. Delone, and Yu. N. Nechaev, Bubble Chambers, Gosatomizdat (1963).

    Google Scholar 

  34. M. G. Sirotyuk, Ultrasonic cavitation processes at elevated hydrostatic pressures, Akust. Zh., 12 (2): 231 (1966).

    Google Scholar 

  35. J. Ackeret, Experimentalle und theoretische Untersuchungen über Hohlraumbildung im Wasser [Experimenta. and Theoretical Studies of Cavitation in Water], Eidgenöss. Materialprüfungsanstait, E. T. H., Zurich (1930).

    Google Scholar 

  36. L. A. Éinshtein, Trudy TsAGI, No. 584 (1946).

    Google Scholar 

  37. B. S. Kogarko, A model of a cavitating liquid, Dokl. Akad. Nauk SSSR, 137 (6): 1331 (1961).

    MathSciNet  Google Scholar 

  38. B. S. Kogarko, One-dimensional nonsteady motion of a liquid with the onset and development of cavitation, Dokl. Akad. Nauk SSSR, 155 (4): 779 (1964).

    Google Scholar 

  39. Yu. Ya. Boguslayskii, Onset and development of a cavitation rarefaction wave, Akust. Zh., 13 (4): 538 (1967).

    Google Scholar 

  40. L. D. Landau and E. M. Lifshits, Mechanics of Continuous Media, GTTI (1954).

    Google Scholar 

  41. Rayleigh, On pressure developed in a liquid during the collapse of a spherical cavity, Phil. Mag., 34: 94 (1917).

    Google Scholar 

  42. Yu. Ya. Boguslayskii, Propagation of sound waves in a liquid during cavitation, Akust. Zh., 14 (2): 185 (1968).

    Google Scholar 

  43. R. H. Cole, Underwater Explosions, Princeton Univ. Press (1948).

    Google Scholar 

  44. Yu. Ya. Boguslayskii, Cavitation zone in a convergent spherical sound wave, Akust. Zh., 14 (3): 463 (1968).

    Google Scholar 

  45. F. A. Bronin, Investigation of the Cavitation Damage and Dispersion of Solids in a High-Intensity Ultrasonic Field, Dissertation, Moskov. Inst. Stall i Spetsial’nykh Splavov, Moscow (1967).

    Google Scholar 

  46. Yu. Ya. Boguslayskii and Yu. G. Statnikov, Mechanism of the generation of acoustic streaming in a sound field and calculation of its velocity in a cavitation zone, Fourth All-Union Conference on Acoustics, BV1, Moscow (1968).

    Google Scholar 

  47. L. D. Rozenberg, Ultrasonic focusing radiators, Sources of High-Intensity Ultrasound (L. D. Rozenberg, ed), Vol. 1, Plenum Press, New York (1969), pp. 223–309.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1971 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rozenberg, L.D. (1971). The Cavitation Zone. In: Rozenberg, L.D. (eds) High-Intensity Ultrasonic Fields. Ultrasonic Technology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5408-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5408-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5410-0

  • Online ISBN: 978-1-4757-5408-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics