Skip to main content

Stochastic Dynamics of Continuously Observed Quantum Systems

  • Chapter
Quantum Communications and Measurement

Abstract

The irreversible and stochastic behaviour of the continuously (in time) observed quantum system expressed by the reduction of the wave function cannot be described within the standard formulation of quantum mechanics. The state of a quantum system under continuous nondemolition observation evolves according to weakly-nonlinear filtering equation announced by Belavkin in 1988. This quantum stochastic differential equation of Ito type can be obtained from the unitary evolution of the compound system — “system plus measuring device” by conditioning with respect to the measuring trajectories. The equation has been applied to some significant physical problems. These include: stochastic resolution of quantum Zeno paradox for a free particle, watchdog effects for quantum particle for various cases of the diffusion nondemolition measurement and relaxation without mixing of an atom under a counting observation.

Work supported in part by The State Committee for Scientific Research, under the project no. 2 0227 91 01.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. von Neumann, Mathematical Foundations of Quantum Mechanics, trans. by R. T. Beyer, Princeton Unive. Press, Princeton, 1955.

    Google Scholar 

  2. A. Sudbery, Quantum Mechanics and the Particles of Nature, Cambridge Unive. Press, Cambridge, 1986.

    Google Scholar 

  3. A. S. Holevo, Quantum Probability and Quantum Statistics, in Progress in Science and Technology: Contemporary Problems in Mathematics, Vol. 83, VINITI, Moscow, 1991 (in Russian).

    Google Scholar 

  4. Ch. N. Friedman, Indiana Univ. Math. J. 21, 1001 (1972).

    Google Scholar 

  5. B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 756 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  6. E. B. Davies and J. T. Lewis, Commun Math. Phys. 17, 239 (1970).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. E. B. Davies, Quantum Theory of Open Systems, Academic Press, London, 1976.

    MATH  Google Scholar 

  8. M. Ozawa, J. Math. Phys. 25, 79 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  9. M. D. Srinivas, Commun. Math. Phys. 71, 131 (1980).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. M. Ozawa, in Probability Theory and Quantum Statistics, LNM 1021, Springer, Berlin, 1983, p. 518.

    Google Scholar 

  11. M. Ozawa, Publ. RIMS, Kyoto Univ. 21, 279 (1985).

    Article  MATH  Google Scholar 

  12. A. Barchielli, L. Lanz, and G. M. Prosperi, Nuovo Cimento 72B, 79 (1982).

    Article  MathSciNet  Google Scholar 

  13. A. Barchielli, L. Lanz, and G. M. Prosperi, Found. Phys. 13, 779 (1983).

    Article  MathSciNet  ADS  Google Scholar 

  14. E. B. Davies, Commun Math. Phys. 15, 277 (1969).

    Article  ADS  MATH  Google Scholar 

  15. E.B. Davies, Commun Math. Phys. 19, 83 (1970).

    Article  ADS  MATH  Google Scholar 

  16. E.B. Davies, Commun. Math. Phys. 22, 51 (1971).

    Article  ADS  MATH  Google Scholar 

  17. E. B. Davies, IEEE Trans. Inf. Theory 23, 530 (1977).

    Article  MATH  Google Scholar 

  18. M. D. Srinivas and E. B. Davies, Optica Acta 28, 981 (1980), 29, 235 (1982).

    Article  Google Scholar 

  19. A.S. Holevo, Izv. Vuz. Mat. 26, 3 (1982).

    Google Scholar 

  20. P. Zoller, M. Marte, and D.F. Walls, Phys. Rev. A 35, 198 (1987).

    Article  ADS  Google Scholar 

  21. G. Lindblad, Commun. Math. Phys. 48, 119 (1976).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, J. Math. Phys. 17, 821 (1976).

    Google Scholar 

  23. V. P. Belavkin, in Proc. V Symp. Inf. Theory, Vol. 1, Moscow-Tbilisi, 1979, p. 37.

    Google Scholar 

  24. G. Lupieri, J. Math. Phys. 24, 2329 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. A. Barchielli, Nuovo Cimento 74B, 113 (1983).

    Article  MathSciNet  Google Scholar 

  26. A. Barchielli, Phys. Rev. D 32, 347 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  27. A. Barchielli and G. Lupieri, J. Math. Phys. 26, 2222 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. R. L. Hudson and K. R. Parthasarathy, Commun. Math. Phys. 93, 301 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. C.W. Gardiner and M.J. Collett, Phys. Rev. A 31, 3761 (1985).

    Article  MathSciNet  ADS  Google Scholar 

  30. V. P. Belavkin, Radiotechnika i Elektronika 35, 1445 (1980).

    MathSciNet  ADS  Google Scholar 

  31. V. P. Belavkin, in Information Complexity and Control in Quantum Physics, edited by A. Blaquiere, S. Diner, and G. Lochak, Springer, Berlin, 1987, p. 310.

    Google Scholar 

  32. A. Barchielli and G. Lupieri, in Quantum Probability and Applications II, LNM 1136, Springer, Berlin, 1985, p. 57.

    Google Scholar 

  33. A. Barchielli, Phys. Rev. A 34, 1642 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Barchielli, J. Phys. A: Math. Gen. 20, 6341 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  35. A. Barchielli, in Quantum Probability and Applications III, LNM 1303, Springer, Berlin, 1988, p. 37.

    Google Scholar 

  36. V. P. Belavkin, in Modeling and Control of Systems in Engineering, Quantum Mechanics, Economics and Biosciences, edited by A. Blaquiere, Springer, Berlin, 1988, p. 245.

    Google Scholar 

  37. V. P. Belavkin, in Stochastic Methods in Mathematics and Physics, edited by R. Gielerak and W. Karwowski, World Scientific, Singapore 1989, p. 310.

    Google Scholar 

  38. V. P. Belavkin, Phys. Lett. A 140, 355 (1989).

    MathSciNet  Google Scholar 

  39. V. P. Belavkin, J. Phys. A: Math. Gen. 22, L1109 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  40. V. P. Belavkin, Lett. Math. Phys. 20, 85 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. V. P. Belavkin, J. Math. Phys. 31, 2930 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. V. P. Belavkin and P. Staszewski, Phys. Rev. A 45, 1347 (1992).

    Article  ADS  Google Scholar 

  43. V. P. Belavkin, Commun Math. Phys. 146, 611 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. P. Staszewski, A Limit Theorem for Belavkin’s Filtering Equation, Proc. 5th Intern. Vilnius Conf. Prob. Theory and Math. Statistics, Vilnius 1989, p. 163.

    Google Scholar 

  45. V. P. Belavkin and P. Staszewski, Rep. Math. Phys. 29, 213 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. P. Staszewski and G. Staszewska, Open Sys. Information Dyn. 1, 103 (1993).

    Article  Google Scholar 

  47. Ph. Pearle, Phys. Rev. D 13, 857 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  48. Ph. Pearle, Phys. Rev. Lett. 53, 1775 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  49. Ph. Pearle, Phys. Rev. D 33, 2240 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  50. Ph. Pearle, Phys. Rev. A 39, 2277 (1989).

    Article  ADS  Google Scholar 

  51. N. Gisin, Phys. Rev. Lett. 52, 1657 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  52. N. Gisin, Phys. Rev. Lett. 53, 1776 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  53. N. Gisin, Heiv. Phys. Acta 62, 363 (1989).

    MathSciNet  Google Scholar 

  54. G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470 (1986).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  55. G. C. Ghirardi, Ph. Pearle, and A. Rimini, Phys. Rev. A 42, 78 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  56. L. Diósi, J. Phys. A 21, 2885 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. L. Diósi, Phys. Lett. A 129, 419 (1988).

    Google Scholar 

  58. L. Diósi, Phys. Lett. A 132, 233 (1988).

    Google Scholar 

  59. L. Diósi, Phys. Rev. A 40, 1165 (1989).

    Article  ADS  Google Scholar 

  60. A. Guichardet, Symmetric Hilbert Spaces and Related Topics, LNM 261, Springer, Berlin, 1972.

    Google Scholar 

  61. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis, Academic Press, New York, 1972; Vol. 2: Fourier Analysis, Self-Adjointness, Academic Press, New York, 1975.

    Google Scholar 

  62. R. Alicki and K. Lendi, Quantum Dynamical Semigroups and Applications, LNP 286, Springer, Berlin, 1987.

    Google Scholar 

  63. V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudarshan, Rep. Math. Phys. 13, 149 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  64. K. Hepp and E. Lieb, Helv. Phys. Acta 46, 573 (1973).

    Google Scholar 

  65. C. W. Gardiner, Handbook of Stochastic Methods, Springer, Berlin, 1983.

    Book  MATH  Google Scholar 

  66. A. Barchielli, V. P. Belavkin, J. Phys. A: Math. Gen. 24, 1495 (1991).

    Article  ADS  Google Scholar 

  67. K. Kraus, Ann. Phys. 64, 311 (1971).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  68. W. F. Stinespring, Proc. Am. Math. Soc. 6, 211 (1955).

    MathSciNet  MATH  Google Scholar 

  69. K. Yosida, Functional Analysis, 2nd ed. Springer, Berlin, 1968.

    Book  Google Scholar 

  70. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam, 1982.

    MATH  Google Scholar 

  71. H. Maassen, in Quantum Probability and Applications II, LNM 1136, Springer, Berlin, 1985, p. 534.

    Google Scholar 

  72. C. M. Caves and G. J. Milburn, Phys. Rev. A 36, 5543 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  73. P. Staszewski and G. Staszewska, Europhys. Lett. 20, 191 (1992).

    Article  MathSciNet  ADS  Google Scholar 

  74. V. P. Belavkin and P. Staszewski, Phys. Lett. A 140, 359 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  75. P. Staszewski, Stochastic Dynamics of Continuously Observed Quantum Particle, Proc. 23rd Conf. EGAS, Torun 1991, p. 217.

    Google Scholar 

  76. D. Chruscinski and P. Staszewski, Physica Scripta 45, 193 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  77. P. Staszewski, Quantum Mechanics of Continuously Observed Systems, N. Copernicus University Press, Torun, 1993.

    Google Scholar 

  78. V. N. Kolokol’tsov, Preprint No. 228, Institut für Mathematik, Ruhr-Universität Bochum, 1994.

    Google Scholar 

  79. V. P. Belavkin, Found. Phys. 24, 685 (1994).

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Staszewski, P. (1995). Stochastic Dynamics of Continuously Observed Quantum Systems. In: Belavkin, V.P., Hirota, O., Hudson, R.L. (eds) Quantum Communications and Measurement. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1391-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1391-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1393-7

  • Online ISBN: 978-1-4899-1391-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics