Skip to main content

Theory of Free-Space Optical (FSO) Communication Signal Propagation Through Atmospheric Channel

  • Chapter
  • First Online:
Advanced Free Space Optics (FSO)

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 186))

Abstract

The goal of a communication system is to transmit information which can be accomplished in many ways. Free-space optical (FSO) technology depends on the propagation of optical beam through various media, which interact with and affect the quality of the propagating optical signal. The understanding of the atmospheric phenomena and how they affect the propagating light is essential in designing effective, intelligent and cost-efficient FSO links and reliable networks in order to provide uninterrupted service at the expected quality. FSO communication has increasingly attracted attention in the past decade for a number of applications for providing high bandwidth wireless communication links. Some of these applications include satellite-to-satellite cross-links, up-and-down links between space platforms and aircraft, ships, and other ground platforms, and among mobile or stationary terminals to solve the last mile problem through the atmosphere. However, there are a variety of deleterious features of the atmospheric channel that may lead to serious signal fading, and even the complete loss of signal altogether.

The atmosphere is composed of gas molecules, water vapor, aerosols, dust, and pollutants whose sizes are comparable to the wavelength of a typical optical carrier affecting the carrier wave propagation not common to a radio frequency (RF) system. Absorption and scattering due to particulate matter may significantly attenuate the transmitted optical signal, while the wave-front quality of a signal-carrying laser beam transmitting through the atmosphere can be severely degraded, causing intensity fading, increased bit error rates, and random signal losses at the receiver

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.M. Yaglom, An Introduction To The Theory Of Stationar Random Functions (Dover Publications Inc., New York, 1962). (Translated and Edited by Richard A. Silverman)

    Google Scholar 

  2. P. Beckman, Probability in Communication Engineering (Harcourt, Brace & World, Inc., New York, 1967)

    Google Scholar 

  3. L.C. Andrews, R.L. Phillips, Laser Beam Propagation Through Random Media (SPIE Engineering, Bellingham, 1998)

    Google Scholar 

  4. S.V. Kartalopoulos, Free Space Optical Networks For Ultra-Broad Band Services (IEEE/Wiley, Hoboken, 2011)

    Book  Google Scholar 

  5. L.C. Andrews, R.L. Phillips, C.Y. Hopen, Laser Beam Scintillation With Application (SPIE, Bellingham, 2011).

    Google Scholar 

  6. J.C. Ricklin, S.M. Hammel, F.D. Eaton, S.L. Lachinova, Atmospheric channel effects on free-space laser communication, in Arun K. Majumdar and Jennifer C. Ricklin “Free-Space Laser Communications: Principles and Advances”. 9–56, Springer, New York (2008).

    Google Scholar 

  7. D. Kedar, S. Arnon, Evaluation of coherence interference in optical wireless communication through multi-scattering channels, Appl Opt. 45(14), 3263–3269 (2006).

    Article  ADS  Google Scholar 

  8. S. Jaruwatanadilok, Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory, Selected Areas in communications, IEEE J. 26(9), 1620–1627 (2008).

    Google Scholar 

  9. D. Kedar, Underwater sensor network using optical wireless communication, SPIE. Newsroom—The International Society for Optical Engineering (2007)

    Google Scholar 

  10. K. Akhavan, M. Kavehrad, S. Jivkova, High-speed-power-efficient indoor wireless infrared communication using code combining—part 1, IEEE Trans. Commun. 50(7), 1098–1109 (2002)

    Article  Google Scholar 

  11. D. \({O}'\)Brien, Indoor optical wireless communications: Recent developments and future challenges, Proc. SPIE. 7464, 7464B (2009)

    Google Scholar 

  12. W. Dta, Laser beam attenuation determine by the method of available applied power in turbulent atmosphere, J Telecommun Inf Technol, (2009)

    Google Scholar 

  13. K. Wang, L. Zeng, C. Yin, Influence of the incident wave-front on intensity distribution of the non-diffracting beam used in large-scale measurement, Opt Commun. 216, 99–103 (2003)

    Google Scholar 

  14. V. Kollárová, T. Med ik, R. \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{C}\) elechovsk\({y}'\), Z. Bouchal, O. Wilfert, Z. Kolka, Application of non-diffracting beams to wireless optical communications “Application of nondiffracting beams to wireless optical communications”, Proc. SPIE 6736, Unmanned/Unattended Sensors and Sensor Networks IV, 67361C (October 05, 2007); doi:10.1117/12.737361.

    Google Scholar 

  15. M. Duocastella, A.B. Craig, Bessel and annular beams for materials processing, Laser Photonics Rev. 6, 607–621 (2012)

    Article  Google Scholar 

  16. H.T. Eyyuboglu, C. Arpali, Y. Baykal, Flat topped beams and their characteristics in turbulent media, Opt. Express. 14(10), 4196 (2006)

    Article  ADS  Google Scholar 

  17. A.C. Schell, The multiple plate antenna, Ph.D Dissertation, Massachusetts Institute of Technology, Cambridge; MA 1961

    Google Scholar 

  18. J. Wu, A.D. Boardman, Coherence length of a Gaussian-Schell beam and atmosphere turbulence, J. Mod. Opt. 38, 1355–1363 (1991)

    Article  ADS  Google Scholar 

  19. G. Gbur, E. Wolf, Spreading of partially coherent beams in random media, J. Opt. Soc. Am. A. 19, 1592–1598 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  20. G. Gbur, O. Korotkova, Angular spectrum representation for the propagation of arbitrary coherent and partially coherent beams through atmospheric turbulence, J. Opt. Soc. Am A. 24, 745–752 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  21. B. Chen, Z. Chen, J. Pu, Propagation of partially coherent Bessel-Gaussian beams in turbulent atmosphere, Opt Laser Technol. 40, 820–827 (2008)

    Article  ADS  Google Scholar 

  22. M. Yoshikawa, A. Murakami, J. Sakurai, H. Nakayama, T. Nakamura, High power VCSEL devices for free space optical communications, IEEE Electron Compon Technol Conf, 2, 1353–1358 (2005)

    Google Scholar 

  23. A.D. Wheelon, Electromagnetic Scintillation, Vol.1, Geometrical Optics (Cambridge University, Cambridge, 2001)

    Google Scholar 

  24. N.K. Vinnichenko, et al, Turbulence in the Free Atmosphere (Consultants Bureau, New York, 1980)

    Google Scholar 

  25. R. Hill, Models of scalar spectrum for turbulent advection, J. Fluid Mech. 88, 541–662 (1978)

    Google Scholar 

  26. L.C. Andrews, R.L. Phillips, Laser Beam Propagation Through Random Media, (SPIE, Bellingham, 2005)

    Book  Google Scholar 

  27. H.R. Anderson, Fixed Broadband Wireless System Design (Wiley, West Sussex, 2003)

    Google Scholar 

  28. V.I. Tatrskii, The effects of the turbulent atmosphere on wave propagation, Available from U.S. Department of Commerce, Springfield, VA 22151, Translated by IPST Satf, 1971

    Google Scholar 

  29. A. Ishimaru, Wave Propagation And Scattering In Random Media (IEEE, Piscataway, 1997)

    MATH  Google Scholar 

  30. A.K. Majumdar, H. Gamo, Statistical measurements of irradiance fluctuations of a multipass laser beam propagated through laboratory-simulated atmospheric turbulence, Appl. Opt. 21 (12), 2229–2235 (1982)

    Google Scholar 

  31. J.H. Churnside, S.F. Clifford, Log—normal Rician probability—density function of optical scintillations in the turbulent atmosphere, J. Opt. Soc. Am. A, 4, 1923–1930 (1987)

    Article  ADS  Google Scholar 

  32. R.L. Phillips, L.C. Andrews, Universal statistical model for irradiance fluctuations in a turbulent medium, J. Opt. Soc. Am. 72, 864–870 (1982)

    Article  ADS  Google Scholar 

  33. L.C. Andrews, R.L. Phillips, I-K distribution as a universal propagation model of laser beams in atmospheric turbulence, J. Opt. Soc. Am. A. 2, 160–163 (1985)

    Article  ADS  Google Scholar 

  34. R. Barakat, Weak—scatterer generalization of the K—density function with application to laser scattering in atmospheric, J. Opt. Soc. Am. A. 3, 401–409 (1986)

    Article  ADS  Google Scholar 

  35. J.H. Churnside, R.J. Hill, Probability density of irradiance scintillations for strong path-integrated refractive turbulence, J. Opt. Soc. Am. A. 4, 727–733 (1987)

    Article  ADS  Google Scholar 

  36. N.D. Chatzidiamantis, H.G. Sandalidis, G.K. Karagiannidis, M. Matthaiou, Inverse Gaussian modeling of turbulence-induced fading in Free-Space Optical Systems, J. Lightwave Technol. 29(10) (2011)

    Google Scholar 

  37. R. Barrios, F. Dios, Exponential Weibull distribution family under aperture averaging for Gaussian beam waves, Opt Express. 20(12), 13055–13064 (2012)

    Article  ADS  Google Scholar 

  38. A.K. Majumdar, Higher-order statistics of laser-irradiance fluctuations due to turbulence, J.Opt. Soc. Am. A. 1, 1067–1074 (1984)

    Article  ADS  Google Scholar 

  39. A.K. Majumdar, Higher-order skewness and excess coefficients of some probability distributions applicable to optical propagation phenomena, J. Opt. Soc. Am. 69(1), 199–202 (1979)

    Article  ADS  Google Scholar 

  40. A.K. Majumdar, Uniqueness of statistics derived from moments of irradiance fluctuations in atmospheric optical propagation, Opt. Commun. 50(1), 1–7 (1984)

    Article  ADS  Google Scholar 

  41. J.A. Shehat, J.D. Tamarkin, The Problem Of Moments (American Mathematical Society, New York, 1943)

    Google Scholar 

  42. A.K. Majumdar, C.E. Luna, P.S. Idell, Reconstruction of Probability Density Function of intensity fluctuations relevant to Free-Space Laser communications through atmospheric turbulence, Proc. SPIE. 6709, 67090 M-1-67090 M—15, (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Majumdar, A. (2015). Theory of Free-Space Optical (FSO) Communication Signal Propagation Through Atmospheric Channel. In: Advanced Free Space Optics (FSO). Springer Series in Optical Sciences, vol 186. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0918-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0918-6_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0917-9

  • Online ISBN: 978-1-4939-0918-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics