Skip to main content

Modulating Retroreflector-based Free-space Optical (FSO) Communications

  • Chapter
  • First Online:
Advanced Free Space Optics (FSO)

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 186))

Abstract

In this chapter, the niche area of free-space laser communications and data links which use modulating retroreflectors, or retro-modulators, will be discussed. This is a growing area of interest since technology can now support “shutters” that can achieve usable communications rates. Retro-modulators require very little power draw and offer extremely small form factors and mass. The chapter would be structured as follows:

  1. 1.

    Introduction and Background

  2. 2.

    Description of Modulating Retroreflector Free-Space Optical Communications System

  3. 3.

    Modulating Retroreflector Technologies

  4. 4.

    odulated retroreflector (MRR)-based FSO Communications Systems Performance Analysis

  5. 5.

    Applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, Chap. 18, Electro-Optics (Wiley,Hoboken, NJ , 1991)

    Google Scholar 

  2. T.A. Maldonao, Handbook of Optics, Vol. II, Chap. 13 (McGraw-Hill, New York, NY, 1995)

    Google Scholar 

  3. G. Spirou, I. Yavin, M. Wheel, A. Vorozcovs, A. Kumarakrishnan, P.R. Battle, R.C. Swanson, A high-speed-modulated retro-reflector for laser using an acousto-optic modulator. Can. J. Phys. 81, 625–638 (2003)

    Google Scholar 

  4. E. Hallstig, Nematic liquid crystal spatial light modulators for laser beam steering. Dissertation, Faculty of Science and Technology, ACTA Universitatis Upsaliensis, Uppsala, Sweden, 2004

    Google Scholar 

  5. G.C. Gilbreath, W.S. Rabinovich, T.J. Meehan, M.J. Vilcheck, R. Mahon, R. Barris, M. Ferraro, I. Sokolsky, J.A. Vasquez, C.S. Bovais, K. Cochrell, K.C. Goins, R. Barbehenn, D.S. Katzer, K. Ikossi-Anastasiou, M.J. Montes, Compact light weight payload for covert data link using a multiple quantum well modulations retro-reflector on a small rotary-wing unmanned airborne vehicle. Proc. SPIE 4127, 57–67 (2000)

    Google Scholar 

  6. G. Charmaine Gilbreath, W.S. Rabinovich, T.J. Meehan, M.J. Velcheck, M. Stell, R. Mahon, P.G. Goetz, E. Oh, J.A. Vesquez, K. Cochrell, R.L. Lucke, S. Mozersky, Progress in development of multiple-quantum-well retro modulators for free-space data links. Opt. Eng. 42(6), 1611–1617 (2003)

    Google Scholar 

  7. M.L. Bierman et al., Design and analysis of a diffraction limited Cat’s eye retroreflector. Opt. Eng. 41(7), 1665–1660 (2002)

    Google Scholar 

  8. G.C. Gilbreath et al., Large-aperture multiple quantum well modulating retroreflector for free-space optical data transfer on unmanned aerial vehicles. Opt. Eng. 40(7), 1348–1356 (2001)

    Google Scholar 

  9. G.C. Gilbreath et al., Progress in development of multiple quantum well retro-modulators for free space data link. Opt. Eng. 42, 1611–1617 (2003)

    Google Scholar 

  10. G. Charmaine Gilbreath, W.S. Rabinovich, T.J. Meehan, M.J. Vilcheck, M. Stell, R. Mahon, P.G. Goetz, E. Oh, J. Vasquez, K. Cochrell, R. Lucke, S. Mozersky, Real time video transfer using multiple quantum well retromodulators. SPIE Proc. 4821(61), 155–162, (2002). (Gilbreath et al., Real-time 1550 nm retro-modulated video link. Proceedings of the 2003 IEEE Aerospace conference, paper No. 1560, March, 2003

    Google Scholar 

  11. W.S. Rabinovich, P.G. Goetz, R. Mahon, L. Swingen, J. Murphy, G.C. Gilbreath, S. Binari, E. Waluschka, Performance of Cat’s eye modulating retro-reflectors for free-space optical communications. Proc. SPIE 5550, 104–114 (2004)

    Google Scholar 

  12. P.G. Goetz, W.S. Rabinovich, R. Mahon, L. Swingen, G.C. Gilbreath, J.L. Murphy, H.R. Burris, M. Fa Stell, Practical considerations of retro-reflector choice in modulating retro-reflector systems. Digest of IEEE LEOS summer Topical Meetings, 2005

    Google Scholar 

  13. W.S. Rabinovich, P.G. Goetz, R. Mahon, L. Swingen, J. Murphy, M. Ferraro, H. Ray Burris Jr., C.I. Moore, M. Suite, G. Charmaine Gilbreath, S. Binari, D. Klotzkin, 45-Mbit/s Cat’s eye modulating retro-reflectors. Opt. Eng. 46(10), 104001 (2007)

    Google Scholar 

  14. W.S. Rabinovich, J.L. Murphy, M. Suite, M. Ferraro, R. Mahon, P. Goetz, K. Hacker, E. Saint Georges, S. Uecke, J. Sender, Free-space optical data link to a small robot using modulating retro-reflectors. Proc. SPIE 7464, 746408-1 (2009)

    Google Scholar 

  15. P.G. Goetz et al., Modulating retro-reflector laser com systems at the Naval Research Laboratory. IEEE Military communications conference-Unclassified Program-systems Perspectives Track, 2010

    Google Scholar 

  16. A. Guillen Salas, J. Stupl, J. Mason, Modulating retro-reflectors: Technology, link budgets and applications. 63rd International Astro-nautical congress, Naples, Italy, IAC-12, B4, 6B, 11, 2012

    Google Scholar 

  17. L. Zip-Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, Z. Bleir, Secure optical communication system utilizing deformable MEMS mirrors. Proc. SPIE 7209, 72090C-1–72090C-15 (2009). (L. Zip-Schatzberg, T. Bifano, S. Cornelissen, J. Stewart, Z. Bleir, Secure optical communication system utilizing deformable MEMS mirrors. Proc. SPIE 7318, 73180T-1–73180T-12 (2009))

    Google Scholar 

  18. T.K. Chan, J.E. Ford, Retroreflecting optical modulator using an MEMS deformable micromirror array. J. Lightwave Technol. 24(1), 516–525 (2006)

    Google Scholar 

  19. C. Jenkins, W. Johnstone, D. Uttamchandani, V. Handerek, S. Radcriffe, MEMS actuated spherical retro reflector for free-space optical communications. Electron. Lett. 41(23), 1278–1279 (2005)

    Google Scholar 

  20. D. Peterson, O. Solgaard, Free space communication link using a grating light modulator. Sensor. Actuator. 83(1–3), 6–10 (2000)

    Google Scholar 

  21. C. Luo, K.W. Goossen, Optical micro electromechanical system array for free-space retro communication. IEEE Photonic. Technol. Lett. 16(9), 2045–2047 (2004)

    Google Scholar 

  22. T.K. Chan, Retro-modulators and fast beam steering for free-space optical communications. Ph.D dissertation, University of California, San Diego, 2009

    Google Scholar 

  23. T.K. Chan, J.E. Ford, Retro-reflecting optical modulator using an MEMS deformable micro mirror array. J. Lightwave Technol. 24(1), 516–525 (2006)

    Google Scholar 

  24. K.W. Goossen, Micro machined modulator and methods for fabricating the same, US Patent. 6519073, 2003

    Google Scholar 

  25. A.M. Scott, K.D. Ridley, D.C. Jones, M.E. MoN.e, G.W. Smith, K.M. Brunson, A. Lewin, K.L. Lewis, Retro reflectors Communications over a kilometer range using a MEMS-based optical tas. Proc. SPIE. 7480, 74800 L-1–74800 L-10 (2009)

    Google Scholar 

  26. P. Schultz, B. Cumby, J. Heikenfeld, Investigation of five types of Switchable retro reflector films for enhanced visible and infrared conspicuity applications. Appl. Optics 51(17), 3744–3754 (2012)

    Google Scholar 

  27. F. Mugele, J.C. Baret, Electro wetting: From basics to applications. J. Phys. Condens. Matter 17, R705–R774 (2005)

    Google Scholar 

  28. T.M. Shay, R. Kumar, 2.5-Gbps amplified retro-modulator for free-space optical communications. Proc. SPIE 5550, 122–129 (2004)

    Google Scholar 

  29. G. Keiser, Optical Fiber Communications, 2nd edn. (McGraw-Hill, New York, 1991)

    Google Scholar 

  30. G.C. Gilbreath, W.S. Rabinovich, T.J. Meehan, M.J. Vilcheck, R. Mahon, R. Burris, M. Ferraro, I. Sokolsky, J.A. Vasquez, C.S. Bovais, K. Cochrell, K.C. Goins, R. Barbehenn, D.S. Katzer, K. Ikossi-Anastasiou, M.J. Montes, Compact, lightweight payload for covert data link using a multiple quantum well modulating retro-reflector on a small rotary-wing unmanned airborne vehicle. Proc. SPIE 4127, 57–67 (2000)

    Google Scholar 

  31. A.K. Majumdar, T.M. Shay, Wide field-of-view amplified fiber-retro for secure high data rate communications and remote data transfer, US Patent, No. US 8,301,032 B2, date of patent Oct. 30, 2012

    Google Scholar 

  32. A.M. Scott, K.D. Ridley, Calculations of bit error rates for retroreflective laser communications systems in the presence of atmospheric turbulence. Proc. SPIE 5614, 31–42 (2004)

    Google Scholar 

  33. L.C. Andrews, R.L. Phillips, C.Y. Hopen, Laser Beam Scintillation with applications (SPIE, Bellingham, Washington, 2001)

    Google Scholar 

  34. A.K. Majumdar, Free-space laser communication performance in the atmospheric channel. J. Opt. Fiber. Commun. Rep. 2, 345–396 (2005)

    Google Scholar 

  35. A.K. Majumdar, J.C. Ricklin, Free-Space Laser Communications (Springer, New York, 2008)

    Google Scholar 

  36. L.C. Andrews, R.L. Phillips, Laser Beam Propagation through Random Media, 2nd edn. (SPIE, Bellingham, Washington, 2005)

    Google Scholar 

  37. N. Avlonitis, P.B. Charlesworth, Performance of retro reflector-modulated links under weak turbulence. IET Optoelectron. 6(6), 290–297 (2012)

    Google Scholar 

  38. H. Yin, T. Lan, H. Zhang, H. Jia, S. Chang, J. Yang, Theoretical evaluation of scattering effect on retroreflective free-space optical communication. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 29(12), 2608–2611 (2012)

    Google Scholar 

  39. C.M. Swenson, C.A. Steed, I.A. DeLaRue, R.Q. Fugate, Low power FLC-based retro modulator communications system. Proc. SPIE 2990, 296–310

    Google Scholar 

  40. G. Charmaine Gilbreath, W.S. Rabinovich, R. Mahon, L. Swingen, E. Oh, T. Meehan, P.G. Goetz, Real-time 1550 nm retromodulated video link. Proceedings of the 2003 IEEE Aerospace Conference, Paper No. 1560, 2003

    Google Scholar 

  41. A. Carraso-Casado, R. Vergaz, J.M. Sanchez-Pena, Free-space laser communications with UAVs. Report of RT Organization, # RTO-MP-IST-099

    Google Scholar 

  42. J.L. Gao, Sensor network communications using space-division optical retro-reflectors for in-situ science applications. IEEE paper, 0-7803-7651-X/03, 2003

    Google Scholar 

  43. A.G. Salas, J. Stupl, J. Mason, Modulating retroreflectors: Technology, link budgets and applications. 63rd International Astronautical Congress, Naples, Italy, # IAC-12.B4, 6B,11, 2012

    Google Scholar 

  44. G. Charmaine Gilbreath, N. Glenn Creamer, W.S. Rabinovich, T.J. Meehan, M.J. Vilcheck, J.A. Vasquez, R. Mahon, E. Oh, P.G. Goetz, S. Mozersky, Modulating retroreflectors for space, tracking, acquisition and ranging using multiple quantum well technology, Proc. SPIE 4821, 494–507 (2002)

    Google Scholar 

  45. N. Glenn Creamer, G. Charmaine Gilbreath, T.J. Meehan, M.J. Vilcheck, J.A. Vasquez, W.S. Rabinovich, P.G. Goetz, R. Mahon, Interspacecraft optical communication and navigation using modulating retroreflectors. J. Guid. Control Dyn. 27(1), 100–106, (2004)

    Google Scholar 

  46. G.C. Gilbreath, T.J. Meehan, W.S. Rabinovich, M.J. Vilcheck, R. Mahon, M. Ferraro, J.A. Vasquez, I. Sokolsky, D. Scott Katzer, K. Ikossi-Anastasiou, P.G. Goetz, Retromodulator for optical tagging for LEO consumables. Technical Report, NRL, 2007

    Google Scholar 

  47. A.M. Scott, K.D. Riley, D.C.Jones, M.E. McNie, G.W. Smith, K.M. Brunson, A. Lewin, K.L. Lewis, Retroreflective communications over a kilometer range using a MEMS-based optical tag. Proc. SPIE 7480, 2009

    Google Scholar 

  48. W.S. Rabinovich, J.L. Murphy, M. Suite, M. Ferraro, R. Mahon, P. Goetz, K. Hacker, W. Freeman, E. Saint Georges, S. Uecke, J. Sender, Free-space optical data link to a small robot using modulating retroreflectors. Proc. SPIE 7464, 746408-1 - 746408-9, (2009)

    Google Scholar 

  49. K. Alhammadi, Applying wide field of view retroreflector technology to free space optical robotic communications. PhD dissertation in Electrical Engineering, North Carolina State University, Raleigh, North Carolina, September 2006

    Google Scholar 

  50. H. Hemmati, C. Esproles, W. Farr, W. Liu, P. Estabrook, Retro-modulator with a mini-rover. Proc. SPIE 5338, 50–56, (2004)

    Google Scholar 

  51. T.M.Shay, J.A. MacCannell, C.D. Garrett, D.A. Hazzard, J.A. Payne, N. Dahlstrom, S. Horan, The first experimental demonstration of full-duplex communications on a single laser beam. Proc. SPIE 5160, 265–271 (2004)

    Google Scholar 

  52. T.M. Shay, D. Hazzard, S. Horan, J.A. Payne, Full-duplex optical communication system, U.S. Patent. No. US 6,778,779 B1, Aug. 17, 2004

    Google Scholar 

  53. T.M. Shay, D.A. Hazzard, Circular Polarization Keying, patent pending, Serial No. 60/170,889

    Google Scholar 

  54. A.K. Majumdar, T.M. Shay, US Patent No. US 8,301,032 B2, Oct. 30, 2012

    Google Scholar 

  55. W. Cox, K. Gray, J. Muth, Underwater optical commun ication using a modulating retroreflector. http://www.sea-technology.com/features/2011/0511/retroreflector.php, 2014 Compass Publications, Inc., published in Sea Technology, Vol.52, Issue 5, p.47, May 2011.

  56. S. Arnon, Underwater optical wireless communication network. Opt. Eng. 49(1), 015001 (2010)

    Google Scholar 

  57. Y. Gil, N. Rotter, S. Arnon, Feasibility of retroreflective transdermal optical wireless communication. Appl. Optics 51(18), 4232–4239, (2012)

    Google Scholar 

  58. M.Y. Abualhoul, P. Svenmarker, Q. Wang, J.Y. Anderson, A.J. Johansson, Free-space optical link for biomedical applications, 34th Annual International Conference of the IEEE EMBS, San Diego, California USA, pp. 1667–1670, 28 August–1 September, 2012

    Google Scholar 

Download references

Acknowledgements

I would like to express my sincere thanks to Dr. Thomas M. Shay, Professor of the department of Electrical & Computer Engineering, The University of New Mexico for carefully reading this chapter and providing helpful comments in this field.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Majumdar, A. (2015). Modulating Retroreflector-based Free-space Optical (FSO) Communications. In: Advanced Free Space Optics (FSO). Springer Series in Optical Sciences, vol 186. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-0918-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0918-6_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-0917-9

  • Online ISBN: 978-1-4939-0918-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics